[INVITED] Subwavelength structures for silicon photonics biosensing

•Subwavelength waveguides are very attractive for achieving high performance sensors.•The standard 220 nm silicon-thickness is not optimal for sensing purposes.•Coherent interferometric architectures enable unambiguous and low cost biosensors.•In the mid infrared, subwavelength structures show a str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and laser technology 2019-01, Vol.109, p.437-448
Hauptverfasser: Wangüemert-Pérez, J. Gonzalo, Hadij-ElHouati, Abdelfettah, Sánchez-Postigo, Alejandro, Leuermann, Jonas, Xu, Dan-Xia, Cheben, Pavel, Ortega-Moñux, Alejandro, Halir, Robert, Molina-Fernández, Íñigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue
container_start_page 437
container_title Optics and laser technology
container_volume 109
creator Wangüemert-Pérez, J. Gonzalo
Hadij-ElHouati, Abdelfettah
Sánchez-Postigo, Alejandro
Leuermann, Jonas
Xu, Dan-Xia
Cheben, Pavel
Ortega-Moñux, Alejandro
Halir, Robert
Molina-Fernández, Íñigo
description •Subwavelength waveguides are very attractive for achieving high performance sensors.•The standard 220 nm silicon-thickness is not optimal for sensing purposes.•Coherent interferometric architectures enable unambiguous and low cost biosensors.•In the mid infrared, subwavelength structures show a strong potential for sensing. Silicon photonic biosensors hold the potential for highly accurate, yet low cost point-of-care devices. Maximizing the sensitivity of the sensing chips while reducing the complexity and cost of the read-out system is pivotal to realize this potential. Here we present an extensive analysis, both from a practical and a theoretical perspective, of current biosensors, and analyze how subwavelength structures can be exploited to enhance their sensitivity. This study is not restricted just to the near-infrared band as we also determine the sensing capabilities of the suspended silicon waveguides with subwavelength metamaterial cladding working in the mid-infrared range. These waveguides have been recently proposed to cover the full transparency window of silicon (λ
doi_str_mv 10.1016/j.optlastec.2018.07.071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124116383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399218307874</els_id><sourcerecordid>2124116383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-aae5e5ce998390782305f1ffb541dd6ed2ce9091a3cf8d63412d888d971458593</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOKd_gwWfW_PRtMnjmF-DoQ9OX0RCl9xuKbWpSTrxv7dj4qtw4D7cc87l_hC6JDgjmBTXTeb62FYhgs4oJiLD5ShyhCZElDKlPOfHaIIxwymTkp6isxAajHFecDZB87fF4-tidXvznjwP669qBy10m7hNQvSDjoOHkNTOJ8G2Vrsu6bcuus7qkKytC9AF223O0UldtQEufucUvdzdruYP6fLpfjGfLVPNJI1pVQEHrkFKwSQuBWWY16Su1zwnxhRg6LjDklRM18IULCfUCCGMLEnOBZdsiq4Ovb13nwOEqBo3-G48qSihOSEFE2x0lQeX9i4ED7Xqvf2o_LciWO2JqUb9EVN7YgqXo8iYnB2SMD6xs-BV0BY6DcZ60FEZZ__t-AFLGXj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124116383</pqid></control><display><type>article</type><title>[INVITED] Subwavelength structures for silicon photonics biosensing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wangüemert-Pérez, J. Gonzalo ; Hadij-ElHouati, Abdelfettah ; Sánchez-Postigo, Alejandro ; Leuermann, Jonas ; Xu, Dan-Xia ; Cheben, Pavel ; Ortega-Moñux, Alejandro ; Halir, Robert ; Molina-Fernández, Íñigo</creator><creatorcontrib>Wangüemert-Pérez, J. Gonzalo ; Hadij-ElHouati, Abdelfettah ; Sánchez-Postigo, Alejandro ; Leuermann, Jonas ; Xu, Dan-Xia ; Cheben, Pavel ; Ortega-Moñux, Alejandro ; Halir, Robert ; Molina-Fernández, Íñigo</creatorcontrib><description>•Subwavelength waveguides are very attractive for achieving high performance sensors.•The standard 220 nm silicon-thickness is not optimal for sensing purposes.•Coherent interferometric architectures enable unambiguous and low cost biosensors.•In the mid infrared, subwavelength structures show a strong potential for sensing. Silicon photonic biosensors hold the potential for highly accurate, yet low cost point-of-care devices. Maximizing the sensitivity of the sensing chips while reducing the complexity and cost of the read-out system is pivotal to realize this potential. Here we present an extensive analysis, both from a practical and a theoretical perspective, of current biosensors, and analyze how subwavelength structures can be exploited to enhance their sensitivity. This study is not restricted just to the near-infrared band as we also determine the sensing capabilities of the suspended silicon waveguides with subwavelength metamaterial cladding working in the mid-infrared range. These waveguides have been recently proposed to cover the full transparency window of silicon (λ&lt;∼8.5 μm), where the fingerprint spectral region of many molecules takes place and so a plethora of evanescent field absorption-based applications will be developed in the near future.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2018.07.071</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biosensors ; Cladding ; Coherent multi-port sensing architecture ; Metamaterials ; Optical properties ; Photonics ; Read out systems ; Sensitivity analysis ; Sensitivity enhancement ; Silicon ; Silicon photonics ; Subwavelength waveguides ; Waveguides</subject><ispartof>Optics and laser technology, 2019-01, Vol.109, p.437-448</ispartof><rights>2018 The Authors</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-aae5e5ce998390782305f1ffb541dd6ed2ce9091a3cf8d63412d888d971458593</citedby><cites>FETCH-LOGICAL-c392t-aae5e5ce998390782305f1ffb541dd6ed2ce9091a3cf8d63412d888d971458593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlastec.2018.07.071$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wangüemert-Pérez, J. Gonzalo</creatorcontrib><creatorcontrib>Hadij-ElHouati, Abdelfettah</creatorcontrib><creatorcontrib>Sánchez-Postigo, Alejandro</creatorcontrib><creatorcontrib>Leuermann, Jonas</creatorcontrib><creatorcontrib>Xu, Dan-Xia</creatorcontrib><creatorcontrib>Cheben, Pavel</creatorcontrib><creatorcontrib>Ortega-Moñux, Alejandro</creatorcontrib><creatorcontrib>Halir, Robert</creatorcontrib><creatorcontrib>Molina-Fernández, Íñigo</creatorcontrib><title>[INVITED] Subwavelength structures for silicon photonics biosensing</title><title>Optics and laser technology</title><description>•Subwavelength waveguides are very attractive for achieving high performance sensors.•The standard 220 nm silicon-thickness is not optimal for sensing purposes.•Coherent interferometric architectures enable unambiguous and low cost biosensors.•In the mid infrared, subwavelength structures show a strong potential for sensing. Silicon photonic biosensors hold the potential for highly accurate, yet low cost point-of-care devices. Maximizing the sensitivity of the sensing chips while reducing the complexity and cost of the read-out system is pivotal to realize this potential. Here we present an extensive analysis, both from a practical and a theoretical perspective, of current biosensors, and analyze how subwavelength structures can be exploited to enhance their sensitivity. This study is not restricted just to the near-infrared band as we also determine the sensing capabilities of the suspended silicon waveguides with subwavelength metamaterial cladding working in the mid-infrared range. These waveguides have been recently proposed to cover the full transparency window of silicon (λ&lt;∼8.5 μm), where the fingerprint spectral region of many molecules takes place and so a plethora of evanescent field absorption-based applications will be developed in the near future.</description><subject>Biosensors</subject><subject>Cladding</subject><subject>Coherent multi-port sensing architecture</subject><subject>Metamaterials</subject><subject>Optical properties</subject><subject>Photonics</subject><subject>Read out systems</subject><subject>Sensitivity analysis</subject><subject>Sensitivity enhancement</subject><subject>Silicon</subject><subject>Silicon photonics</subject><subject>Subwavelength waveguides</subject><subject>Waveguides</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkN1LwzAUxYMoOKd_gwWfW_PRtMnjmF-DoQ9OX0RCl9xuKbWpSTrxv7dj4qtw4D7cc87l_hC6JDgjmBTXTeb62FYhgs4oJiLD5ShyhCZElDKlPOfHaIIxwymTkp6isxAajHFecDZB87fF4-tidXvznjwP669qBy10m7hNQvSDjoOHkNTOJ8G2Vrsu6bcuus7qkKytC9AF223O0UldtQEufucUvdzdruYP6fLpfjGfLVPNJI1pVQEHrkFKwSQuBWWY16Su1zwnxhRg6LjDklRM18IULCfUCCGMLEnOBZdsiq4Ovb13nwOEqBo3-G48qSihOSEFE2x0lQeX9i4ED7Xqvf2o_LciWO2JqUb9EVN7YgqXo8iYnB2SMD6xs-BV0BY6DcZ60FEZZ__t-AFLGXj0</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wangüemert-Pérez, J. Gonzalo</creator><creator>Hadij-ElHouati, Abdelfettah</creator><creator>Sánchez-Postigo, Alejandro</creator><creator>Leuermann, Jonas</creator><creator>Xu, Dan-Xia</creator><creator>Cheben, Pavel</creator><creator>Ortega-Moñux, Alejandro</creator><creator>Halir, Robert</creator><creator>Molina-Fernández, Íñigo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>[INVITED] Subwavelength structures for silicon photonics biosensing</title><author>Wangüemert-Pérez, J. Gonzalo ; Hadij-ElHouati, Abdelfettah ; Sánchez-Postigo, Alejandro ; Leuermann, Jonas ; Xu, Dan-Xia ; Cheben, Pavel ; Ortega-Moñux, Alejandro ; Halir, Robert ; Molina-Fernández, Íñigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-aae5e5ce998390782305f1ffb541dd6ed2ce9091a3cf8d63412d888d971458593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biosensors</topic><topic>Cladding</topic><topic>Coherent multi-port sensing architecture</topic><topic>Metamaterials</topic><topic>Optical properties</topic><topic>Photonics</topic><topic>Read out systems</topic><topic>Sensitivity analysis</topic><topic>Sensitivity enhancement</topic><topic>Silicon</topic><topic>Silicon photonics</topic><topic>Subwavelength waveguides</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wangüemert-Pérez, J. Gonzalo</creatorcontrib><creatorcontrib>Hadij-ElHouati, Abdelfettah</creatorcontrib><creatorcontrib>Sánchez-Postigo, Alejandro</creatorcontrib><creatorcontrib>Leuermann, Jonas</creatorcontrib><creatorcontrib>Xu, Dan-Xia</creatorcontrib><creatorcontrib>Cheben, Pavel</creatorcontrib><creatorcontrib>Ortega-Moñux, Alejandro</creatorcontrib><creatorcontrib>Halir, Robert</creatorcontrib><creatorcontrib>Molina-Fernández, Íñigo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wangüemert-Pérez, J. Gonzalo</au><au>Hadij-ElHouati, Abdelfettah</au><au>Sánchez-Postigo, Alejandro</au><au>Leuermann, Jonas</au><au>Xu, Dan-Xia</au><au>Cheben, Pavel</au><au>Ortega-Moñux, Alejandro</au><au>Halir, Robert</au><au>Molina-Fernández, Íñigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[INVITED] Subwavelength structures for silicon photonics biosensing</atitle><jtitle>Optics and laser technology</jtitle><date>2019-01</date><risdate>2019</risdate><volume>109</volume><spage>437</spage><epage>448</epage><pages>437-448</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>•Subwavelength waveguides are very attractive for achieving high performance sensors.•The standard 220 nm silicon-thickness is not optimal for sensing purposes.•Coherent interferometric architectures enable unambiguous and low cost biosensors.•In the mid infrared, subwavelength structures show a strong potential for sensing. Silicon photonic biosensors hold the potential for highly accurate, yet low cost point-of-care devices. Maximizing the sensitivity of the sensing chips while reducing the complexity and cost of the read-out system is pivotal to realize this potential. Here we present an extensive analysis, both from a practical and a theoretical perspective, of current biosensors, and analyze how subwavelength structures can be exploited to enhance their sensitivity. This study is not restricted just to the near-infrared band as we also determine the sensing capabilities of the suspended silicon waveguides with subwavelength metamaterial cladding working in the mid-infrared range. These waveguides have been recently proposed to cover the full transparency window of silicon (λ&lt;∼8.5 μm), where the fingerprint spectral region of many molecules takes place and so a plethora of evanescent field absorption-based applications will be developed in the near future.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2018.07.071</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-3992
ispartof Optics and laser technology, 2019-01, Vol.109, p.437-448
issn 0030-3992
1879-2545
language eng
recordid cdi_proquest_journals_2124116383
source ScienceDirect Journals (5 years ago - present)
subjects Biosensors
Cladding
Coherent multi-port sensing architecture
Metamaterials
Optical properties
Photonics
Read out systems
Sensitivity analysis
Sensitivity enhancement
Silicon
Silicon photonics
Subwavelength waveguides
Waveguides
title [INVITED] Subwavelength structures for silicon photonics biosensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5BINVITED%5D%20Subwavelength%20structures%20for%20silicon%20photonics%20biosensing&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Wang%C3%BCemert-P%C3%A9rez,%20J.%20Gonzalo&rft.date=2019-01&rft.volume=109&rft.spage=437&rft.epage=448&rft.pages=437-448&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2018.07.071&rft_dat=%3Cproquest_cross%3E2124116383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124116383&rft_id=info:pmid/&rft_els_id=S0030399218307874&rfr_iscdi=true