Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625

•Simulation and modeling on laser powder bed fusion of nickel alloy IN625 powder material.•Laser induced meltpool gets broader and more uneven at higher energy density.•Laser induced spatter of the powder material is detected using thermal image monitoring.•Phase field based solidification simulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and laser technology 2019-01, Vol.109, p.278-292
Hauptverfasser: Arısoy, Yiğit M., Criales, Luis E., Özel, Tuğrul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue
container_start_page 278
container_title Optics and laser technology
container_volume 109
creator Arısoy, Yiğit M.
Criales, Luis E.
Özel, Tuğrul
description •Simulation and modeling on laser powder bed fusion of nickel alloy IN625 powder material.•Laser induced meltpool gets broader and more uneven at higher energy density.•Laser induced spatter of the powder material is detected using thermal image monitoring.•Phase field based solidification simulation shows dendrites forming into the meltpool.•Solidification directions indicate the preferred growth direction is towards the built direction. Finite element modeling and simulation of laser powder bed fusion process (L-PBF) provides physical insight about the laser processing that is often not possible or highly difficult by in-situ monitoring or in-process measurements. A three-dimensional (3D) thermal field especially into depth direction that is not visible by a thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructure growth can be modelled to predict the direction of solidification in the fabricated part. This paper presents 3D Finite Element Method (FEM) based simulation models developed for laser processing of single- and multi-tracks with different energy density levels dependent upon process parameters such as laser power and scan velocity. This 3D L-PBF process model is validated with in-situ thermal measurements and further improved by utilizing predicted spattering of powder material which is in turn included as a stochastic heat loss in the 3D FEM model. Thermal gradients extracted from these simulations utilized to compute the directions in the resulting solidification which are found to be in reasonable agreements with experimental observations. Finally, a phase field method based post processing is applied on the thermal solution to simulate the nucleation phenomenon and columnar dendrite formation during solidification.
doi_str_mv 10.1016/j.optlastec.2018.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124116267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399218310107</els_id><sourcerecordid>2124116267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-28c711ba5ff0b0c7d85b5f223c12bd65ce7f78494b8d63c0f8b0d512f908cd053</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoNBly33qRN2i6HwcfAqBtdhzYPTc00NWmV-Xs7dHArHDiLex7cg9A1gZQA4bdt6vvB1XHQMqVAyhQmEH6CFqQsqoSynJ2iBUAGSVZV9BxdxNgCQM5ZtkDuySvtbPeO607haHejqwfrO-wNHj502NUOG6udmu_eWWWNlbPGdngq1gH3_kdN1GiFzRiP9s7KT-1w7Zzf480zp-wSnZnaRX115CV6u797XT8m25eHzXq1TWRW0SGhpSwIaWpmDDQgC1WyhhlKM0looziTujBFmVd5UyqeSTBlA4oRaioopQKWLdHNnNsH_zXqOIjWj6GbKgUlNCeEU15MqmJWyeBjDNqIPthdHfaCgDhMK1rxN604TCtgAuGTczU79fTEt9VBRGl1J7WyQctBKG__zfgF4wCHRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124116267</pqid></control><display><type>article</type><title>Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625</title><source>Elsevier ScienceDirect Journals</source><creator>Arısoy, Yiğit M. ; Criales, Luis E. ; Özel, Tuğrul</creator><creatorcontrib>Arısoy, Yiğit M. ; Criales, Luis E. ; Özel, Tuğrul</creatorcontrib><description>•Simulation and modeling on laser powder bed fusion of nickel alloy IN625 powder material.•Laser induced meltpool gets broader and more uneven at higher energy density.•Laser induced spatter of the powder material is detected using thermal image monitoring.•Phase field based solidification simulation shows dendrites forming into the meltpool.•Solidification directions indicate the preferred growth direction is towards the built direction. Finite element modeling and simulation of laser powder bed fusion process (L-PBF) provides physical insight about the laser processing that is often not possible or highly difficult by in-situ monitoring or in-process measurements. A three-dimensional (3D) thermal field especially into depth direction that is not visible by a thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructure growth can be modelled to predict the direction of solidification in the fabricated part. This paper presents 3D Finite Element Method (FEM) based simulation models developed for laser processing of single- and multi-tracks with different energy density levels dependent upon process parameters such as laser power and scan velocity. This 3D L-PBF process model is validated with in-situ thermal measurements and further improved by utilizing predicted spattering of powder material which is in turn included as a stochastic heat loss in the 3D FEM model. Thermal gradients extracted from these simulations utilized to compute the directions in the resulting solidification which are found to be in reasonable agreements with experimental observations. Finally, a phase field method based post processing is applied on the thermal solution to simulate the nucleation phenomenon and columnar dendrite formation during solidification.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2018.08.016</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alloying elements ; Computer simulation ; Dendritic structure ; Finite element method ; Flux density ; Fusion ; Heat conductivity ; Heat loss ; Laser processing ; Lasers ; Mathematical models ; Modelling ; Nickel alloys ; Nickel base alloys ; Nucleation ; Powder bed fusion ; Powder beds ; Process parameters ; Simulation ; Solidification ; Temperature ; Thermal measurement ; Three dimensional models</subject><ispartof>Optics and laser technology, 2019-01, Vol.109, p.278-292</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-28c711ba5ff0b0c7d85b5f223c12bd65ce7f78494b8d63c0f8b0d512f908cd053</citedby><cites>FETCH-LOGICAL-c392t-28c711ba5ff0b0c7d85b5f223c12bd65ce7f78494b8d63c0f8b0d512f908cd053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030399218310107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Arısoy, Yiğit M.</creatorcontrib><creatorcontrib>Criales, Luis E.</creatorcontrib><creatorcontrib>Özel, Tuğrul</creatorcontrib><title>Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625</title><title>Optics and laser technology</title><description>•Simulation and modeling on laser powder bed fusion of nickel alloy IN625 powder material.•Laser induced meltpool gets broader and more uneven at higher energy density.•Laser induced spatter of the powder material is detected using thermal image monitoring.•Phase field based solidification simulation shows dendrites forming into the meltpool.•Solidification directions indicate the preferred growth direction is towards the built direction. Finite element modeling and simulation of laser powder bed fusion process (L-PBF) provides physical insight about the laser processing that is often not possible or highly difficult by in-situ monitoring or in-process measurements. A three-dimensional (3D) thermal field especially into depth direction that is not visible by a thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructure growth can be modelled to predict the direction of solidification in the fabricated part. This paper presents 3D Finite Element Method (FEM) based simulation models developed for laser processing of single- and multi-tracks with different energy density levels dependent upon process parameters such as laser power and scan velocity. This 3D L-PBF process model is validated with in-situ thermal measurements and further improved by utilizing predicted spattering of powder material which is in turn included as a stochastic heat loss in the 3D FEM model. Thermal gradients extracted from these simulations utilized to compute the directions in the resulting solidification which are found to be in reasonable agreements with experimental observations. Finally, a phase field method based post processing is applied on the thermal solution to simulate the nucleation phenomenon and columnar dendrite formation during solidification.</description><subject>Alloying elements</subject><subject>Computer simulation</subject><subject>Dendritic structure</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Fusion</subject><subject>Heat conductivity</subject><subject>Heat loss</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Nucleation</subject><subject>Powder bed fusion</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Simulation</subject><subject>Solidification</subject><subject>Temperature</subject><subject>Thermal measurement</subject><subject>Three dimensional models</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoNBly33qRN2i6HwcfAqBtdhzYPTc00NWmV-Xs7dHArHDiLex7cg9A1gZQA4bdt6vvB1XHQMqVAyhQmEH6CFqQsqoSynJ2iBUAGSVZV9BxdxNgCQM5ZtkDuySvtbPeO607haHejqwfrO-wNHj502NUOG6udmu_eWWWNlbPGdngq1gH3_kdN1GiFzRiP9s7KT-1w7Zzf480zp-wSnZnaRX115CV6u797XT8m25eHzXq1TWRW0SGhpSwIaWpmDDQgC1WyhhlKM0looziTujBFmVd5UyqeSTBlA4oRaioopQKWLdHNnNsH_zXqOIjWj6GbKgUlNCeEU15MqmJWyeBjDNqIPthdHfaCgDhMK1rxN604TCtgAuGTczU79fTEt9VBRGl1J7WyQctBKG__zfgF4wCHRg</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Arısoy, Yiğit M.</creator><creator>Criales, Luis E.</creator><creator>Özel, Tuğrul</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625</title><author>Arısoy, Yiğit M. ; Criales, Luis E. ; Özel, Tuğrul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-28c711ba5ff0b0c7d85b5f223c12bd65ce7f78494b8d63c0f8b0d512f908cd053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloying elements</topic><topic>Computer simulation</topic><topic>Dendritic structure</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Fusion</topic><topic>Heat conductivity</topic><topic>Heat loss</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Nucleation</topic><topic>Powder bed fusion</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Simulation</topic><topic>Solidification</topic><topic>Temperature</topic><topic>Thermal measurement</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arısoy, Yiğit M.</creatorcontrib><creatorcontrib>Criales, Luis E.</creatorcontrib><creatorcontrib>Özel, Tuğrul</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arısoy, Yiğit M.</au><au>Criales, Luis E.</au><au>Özel, Tuğrul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625</atitle><jtitle>Optics and laser technology</jtitle><date>2019-01</date><risdate>2019</risdate><volume>109</volume><spage>278</spage><epage>292</epage><pages>278-292</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>•Simulation and modeling on laser powder bed fusion of nickel alloy IN625 powder material.•Laser induced meltpool gets broader and more uneven at higher energy density.•Laser induced spatter of the powder material is detected using thermal image monitoring.•Phase field based solidification simulation shows dendrites forming into the meltpool.•Solidification directions indicate the preferred growth direction is towards the built direction. Finite element modeling and simulation of laser powder bed fusion process (L-PBF) provides physical insight about the laser processing that is often not possible or highly difficult by in-situ monitoring or in-process measurements. A three-dimensional (3D) thermal field especially into depth direction that is not visible by a thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructure growth can be modelled to predict the direction of solidification in the fabricated part. This paper presents 3D Finite Element Method (FEM) based simulation models developed for laser processing of single- and multi-tracks with different energy density levels dependent upon process parameters such as laser power and scan velocity. This 3D L-PBF process model is validated with in-situ thermal measurements and further improved by utilizing predicted spattering of powder material which is in turn included as a stochastic heat loss in the 3D FEM model. Thermal gradients extracted from these simulations utilized to compute the directions in the resulting solidification which are found to be in reasonable agreements with experimental observations. Finally, a phase field method based post processing is applied on the thermal solution to simulate the nucleation phenomenon and columnar dendrite formation during solidification.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2018.08.016</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-3992
ispartof Optics and laser technology, 2019-01, Vol.109, p.278-292
issn 0030-3992
1879-2545
language eng
recordid cdi_proquest_journals_2124116267
source Elsevier ScienceDirect Journals
subjects Alloying elements
Computer simulation
Dendritic structure
Finite element method
Flux density
Fusion
Heat conductivity
Heat loss
Laser processing
Lasers
Mathematical models
Modelling
Nickel alloys
Nickel base alloys
Nucleation
Powder bed fusion
Powder beds
Process parameters
Simulation
Solidification
Temperature
Thermal measurement
Three dimensional models
title Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20thermal%20field%20and%20solidification%20in%20laser%20powder%20bed%20fusion%20of%20nickel%20alloy%20IN625&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Ar%C4%B1soy,%20Yi%C4%9Fit%20M.&rft.date=2019-01&rft.volume=109&rft.spage=278&rft.epage=292&rft.pages=278-292&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2018.08.016&rft_dat=%3Cproquest_cross%3E2124116267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124116267&rft_id=info:pmid/&rft_els_id=S0030399218310107&rfr_iscdi=true