Development of high vorticity structures in incompressible 3D Euler equations

We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2015-08, Vol.27 (8)
Hauptverfasser: Agafontsev, D. S., Kuznetsov, E. A., Mailybaev, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 27
creator Agafontsev, D. S.
Kuznetsov, E. A.
Mailybaev, A. A.
description We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝  k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ.
doi_str_mv 10.1063/1.4927680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124102203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124102203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</originalsourceid><addsrcrecordid>eNotUMtqwzAQFKWFpmkP_QNBTz041cOWrWNJ0gek9NKehSSvGwXbciQ5kL-vQwLL7gwMs8Mg9EjJghLBX-gil6wUFblCM0oqmZVCiOsTLkkmBKe36C7GHSGESyZm6GsFB2j90EGfsG_w1v1t8cGH5KxLRxxTGG0aA0Ts-mms74aJRGdawHyF12MLAcN-1Mn5Pt6jm0a3ER4ud45-39Y_y49s8_3-uXzdZJYVZcrMlM_QaUMDtChNbjTRTZlLwzXTYCWphWRNXeXSamukLAAoY2BYJeuiKPgcPZ19h-D3I8Skdn4M_fRSMcpyShgjfFI9n1U2-BgDNGoIrtPhqChRp7YUVZe2-D96VlzR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124102203</pqid></control><display><type>article</type><title>Development of high vorticity structures in incompressible 3D Euler equations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agafontsev, D. S. ; Kuznetsov, E. A. ; Mailybaev, A. A.</creator><creatorcontrib>Agafontsev, D. S. ; Kuznetsov, E. A. ; Mailybaev, A. A.</creatorcontrib><description>We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝  k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4927680</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Energy spectra ; Energy transfer ; Euler-Lagrange equation ; Eulers equations ; Fluid dynamics ; Initial conditions ; Mathematical analysis ; Physics ; Scaling laws ; Self-similarity ; Vorticity</subject><ispartof>Physics of fluids (1994), 2015-08, Vol.27 (8)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</citedby><cites>FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</cites><orcidid>0000-0003-3619-5834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Agafontsev, D. S.</creatorcontrib><creatorcontrib>Kuznetsov, E. A.</creatorcontrib><creatorcontrib>Mailybaev, A. A.</creatorcontrib><title>Development of high vorticity structures in incompressible 3D Euler equations</title><title>Physics of fluids (1994)</title><description>We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝  k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ.</description><subject>Computational fluid dynamics</subject><subject>Energy spectra</subject><subject>Energy transfer</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Fluid dynamics</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Scaling laws</subject><subject>Self-similarity</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUMtqwzAQFKWFpmkP_QNBTz041cOWrWNJ0gek9NKehSSvGwXbciQ5kL-vQwLL7gwMs8Mg9EjJghLBX-gil6wUFblCM0oqmZVCiOsTLkkmBKe36C7GHSGESyZm6GsFB2j90EGfsG_w1v1t8cGH5KxLRxxTGG0aA0Ts-mms74aJRGdawHyF12MLAcN-1Mn5Pt6jm0a3ER4ud45-39Y_y49s8_3-uXzdZJYVZcrMlM_QaUMDtChNbjTRTZlLwzXTYCWphWRNXeXSamukLAAoY2BYJeuiKPgcPZ19h-D3I8Skdn4M_fRSMcpyShgjfFI9n1U2-BgDNGoIrtPhqChRp7YUVZe2-D96VlzR</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Agafontsev, D. S.</creator><creator>Kuznetsov, E. A.</creator><creator>Mailybaev, A. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3619-5834</orcidid></search><sort><creationdate>20150801</creationdate><title>Development of high vorticity structures in incompressible 3D Euler equations</title><author>Agafontsev, D. S. ; Kuznetsov, E. A. ; Mailybaev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational fluid dynamics</topic><topic>Energy spectra</topic><topic>Energy transfer</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Fluid dynamics</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Scaling laws</topic><topic>Self-similarity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agafontsev, D. S.</creatorcontrib><creatorcontrib>Kuznetsov, E. A.</creatorcontrib><creatorcontrib>Mailybaev, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agafontsev, D. S.</au><au>Kuznetsov, E. A.</au><au>Mailybaev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of high vorticity structures in incompressible 3D Euler equations</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>27</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝  k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4927680</doi><orcidid>https://orcid.org/0000-0003-3619-5834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2015-08, Vol.27 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2124102203
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computational fluid dynamics
Energy spectra
Energy transfer
Euler-Lagrange equation
Eulers equations
Fluid dynamics
Initial conditions
Mathematical analysis
Physics
Scaling laws
Self-similarity
Vorticity
title Development of high vorticity structures in incompressible 3D Euler equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20high%20vorticity%20structures%20in%20incompressible%203D%20Euler%20equations&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Agafontsev,%20D.%20S.&rft.date=2015-08-01&rft.volume=27&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4927680&rft_dat=%3Cproquest_cross%3E2124102203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124102203&rft_id=info:pmid/&rfr_iscdi=true