Development of high vorticity structures in incompressible 3D Euler equations
We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reve...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2015-08, Vol.27 (8) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 27 |
creator | Agafontsev, D. S. Kuznetsov, E. A. Mailybaev, A. A. |
description | We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝ k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ. |
doi_str_mv | 10.1063/1.4927680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124102203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124102203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</originalsourceid><addsrcrecordid>eNotUMtqwzAQFKWFpmkP_QNBTz041cOWrWNJ0gek9NKehSSvGwXbciQ5kL-vQwLL7gwMs8Mg9EjJghLBX-gil6wUFblCM0oqmZVCiOsTLkkmBKe36C7GHSGESyZm6GsFB2j90EGfsG_w1v1t8cGH5KxLRxxTGG0aA0Ts-mms74aJRGdawHyF12MLAcN-1Mn5Pt6jm0a3ER4ud45-39Y_y49s8_3-uXzdZJYVZcrMlM_QaUMDtChNbjTRTZlLwzXTYCWphWRNXeXSamukLAAoY2BYJeuiKPgcPZ19h-D3I8Skdn4M_fRSMcpyShgjfFI9n1U2-BgDNGoIrtPhqChRp7YUVZe2-D96VlzR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124102203</pqid></control><display><type>article</type><title>Development of high vorticity structures in incompressible 3D Euler equations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agafontsev, D. S. ; Kuznetsov, E. A. ; Mailybaev, A. A.</creator><creatorcontrib>Agafontsev, D. S. ; Kuznetsov, E. A. ; Mailybaev, A. A.</creatorcontrib><description>We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝ k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4927680</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Energy spectra ; Energy transfer ; Euler-Lagrange equation ; Eulers equations ; Fluid dynamics ; Initial conditions ; Mathematical analysis ; Physics ; Scaling laws ; Self-similarity ; Vorticity</subject><ispartof>Physics of fluids (1994), 2015-08, Vol.27 (8)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</citedby><cites>FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</cites><orcidid>0000-0003-3619-5834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Agafontsev, D. S.</creatorcontrib><creatorcontrib>Kuznetsov, E. A.</creatorcontrib><creatorcontrib>Mailybaev, A. A.</creatorcontrib><title>Development of high vorticity structures in incompressible 3D Euler equations</title><title>Physics of fluids (1994)</title><description>We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝ k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ.</description><subject>Computational fluid dynamics</subject><subject>Energy spectra</subject><subject>Energy transfer</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Fluid dynamics</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Scaling laws</subject><subject>Self-similarity</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUMtqwzAQFKWFpmkP_QNBTz041cOWrWNJ0gek9NKehSSvGwXbciQ5kL-vQwLL7gwMs8Mg9EjJghLBX-gil6wUFblCM0oqmZVCiOsTLkkmBKe36C7GHSGESyZm6GsFB2j90EGfsG_w1v1t8cGH5KxLRxxTGG0aA0Ts-mms74aJRGdawHyF12MLAcN-1Mn5Pt6jm0a3ER4ud45-39Y_y49s8_3-uXzdZJYVZcrMlM_QaUMDtChNbjTRTZlLwzXTYCWphWRNXeXSamukLAAoY2BYJeuiKPgcPZ19h-D3I8Skdn4M_fRSMcpyShgjfFI9n1U2-BgDNGoIrtPhqChRp7YUVZe2-D96VlzR</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Agafontsev, D. S.</creator><creator>Kuznetsov, E. A.</creator><creator>Mailybaev, A. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3619-5834</orcidid></search><sort><creationdate>20150801</creationdate><title>Development of high vorticity structures in incompressible 3D Euler equations</title><author>Agafontsev, D. S. ; Kuznetsov, E. A. ; Mailybaev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-b680b1b68efe157b4ba0af749b3a2aec90d692fd849cacb995ee122eb289d5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational fluid dynamics</topic><topic>Energy spectra</topic><topic>Energy transfer</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Fluid dynamics</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Scaling laws</topic><topic>Self-similarity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agafontsev, D. S.</creatorcontrib><creatorcontrib>Kuznetsov, E. A.</creatorcontrib><creatorcontrib>Mailybaev, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agafontsev, D. S.</au><au>Kuznetsov, E. A.</au><au>Mailybaev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of high vorticity structures in incompressible 3D Euler equations</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>27</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents e−t/Tℓ and et/Tω describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio Tℓ/Tω ≈ 2/3. We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum Ek ∝ k−5/3, which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law ωmax ∝ ℓ−2/3 for the local vorticity maximums ωmax and the transverse pancake scales ℓ.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4927680</doi><orcidid>https://orcid.org/0000-0003-3619-5834</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2015-08, Vol.27 (8) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2124102203 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Energy spectra Energy transfer Euler-Lagrange equation Eulers equations Fluid dynamics Initial conditions Mathematical analysis Physics Scaling laws Self-similarity Vorticity |
title | Development of high vorticity structures in incompressible 3D Euler equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20high%20vorticity%20structures%20in%20incompressible%203D%20Euler%20equations&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Agafontsev,%20D.%20S.&rft.date=2015-08-01&rft.volume=27&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4927680&rft_dat=%3Cproquest_cross%3E2124102203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124102203&rft_id=info:pmid/&rfr_iscdi=true |