Gas heating effects on the formation and propagation of a microwave streamer in air
The development of microwave plasma streamers at 110 GHz in atmospheric pressure air is numerically investigated taking into account the intense gas heating and its effects on the plasma formation and dynamics. The simulations are based on an implicit finite difference time domain formulation of Max...
Gespeichert in:
Veröffentlicht in: | AIP : Journal of Applied Physics 2015-09, Vol.118 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of microwave plasma streamers at 110 GHz in atmospheric pressure air is numerically investigated taking into account the intense gas heating and its effects on the plasma formation and dynamics. The simulations are based on an implicit finite difference time domain formulation of Maxwell's equations coupled with a simple plasma fluid model and a real gas Euler equation solver. The numerical results show how the formation of a shock wave due to the large microwave power absorbed by the plasma and converted into gas heating strongly modifies the streamer elongation and dynamics. A microwave streamer filament stretches along its axis because of ionization-diffusion mechanisms in the enhanced electric field at the streamer tips. The change in the gas density distribution associated with the formation of shock wave due to gas heating strongly modifies the ionization and diffusion mechanisms and tends to limit the on-axis microwave streamer elongation by enhancing resonance effects. The simulations suggest that gas heating effects also play an important role in the observed bending or branching of microwave streamers after they have reached a critical length. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4930163 |