Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model
Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the com...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2018-10, Vol.39 (10), p.3545-3555 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3555 |
---|---|
container_issue | 10 |
container_start_page | 3545 |
container_title | Polymer composites |
container_volume | 39 |
creator | Megha, R. Ravikiran, Y.T. Vijaya Kumari, S.C. Chandrasekhar, T. Thomas, S. |
description | Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers |
doi_str_mv | 10.1002/pc.24375 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124007543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124007543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</originalsourceid><addsrcrecordid>eNp10LlOxDAQBmALgcRySDyCJRqagI-cdKsVl7QSFFBHk9gBIyc2tgOEikeg4_14Ery7tFSWf3_jGQ1CR5ScUkLYmW1PWcqLbAvNaJaWCcnyahvNCCtYUvKq2EV73j9HSfOcz9D3rQ2qVx9SYGv0BIPSapA_n1_BweBVUGbAvQygsXlXQuLW9NbEXPpzPF_fwEFQrxL7MIoJmw6DDtINMRwecTs6J4cQ4SDGNjoVJvyqIAbxQUOIfRtwTkmHn4y1q5reCKkP0E4H2svDv3MfPVxe3C-uk-Xt1c1ivkxazkmWZKwoeV6BkGVeMJFzRnnXMdGQjlRMFLKrSg5QNiByWjaCZWVKM15UDa9IC8D30fHmX-vMyyh9qJ_NGKfXvmaUpYQUWcqjOtmo1hnvnexq61QPbqopqVdrr21br9ceabKhb0rL6V9X3y02_hdP9Igf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124007543</pqid></control><display><type>article</type><title>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Megha, R. ; Ravikiran, Y.T. ; Vijaya Kumari, S.C. ; Chandrasekhar, T. ; Thomas, S.</creator><creatorcontrib>Megha, R. ; Ravikiran, Y.T. ; Vijaya Kumari, S.C. ; Chandrasekhar, T. ; Thomas, S.</creatorcontrib><description>Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.24375</identifier><language>eng</language><publisher>Newtown: Blackwell Publishing Ltd</publisher><subject>Comparative studies ; Correlation analysis ; Fourier transforms ; Heterojunctions ; Hopping conduction ; Infrared spectroscopy ; Niobium oxides ; Organic chemistry ; Particulate composites ; Polyanilines ; Polymers ; Scanning electron microscopy ; Titanium ; Titanium dioxide ; Transition metal oxides ; Transition metals ; X-ray diffraction ; Yttrium oxide</subject><ispartof>Polymer composites, 2018-10, Vol.39 (10), p.3545-3555</ispartof><rights>2017 Society of Plastics Engineers</rights><rights>2018 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</citedby><cites>FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</cites><orcidid>0000-0002-9951-9501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.24375$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.24375$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Megha, R.</creatorcontrib><creatorcontrib>Ravikiran, Y.T.</creatorcontrib><creatorcontrib>Vijaya Kumari, S.C.</creatorcontrib><creatorcontrib>Chandrasekhar, T.</creatorcontrib><creatorcontrib>Thomas, S.</creatorcontrib><title>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</title><title>Polymer composites</title><description>Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers</description><subject>Comparative studies</subject><subject>Correlation analysis</subject><subject>Fourier transforms</subject><subject>Heterojunctions</subject><subject>Hopping conduction</subject><subject>Infrared spectroscopy</subject><subject>Niobium oxides</subject><subject>Organic chemistry</subject><subject>Particulate composites</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><subject>X-ray diffraction</subject><subject>Yttrium oxide</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LlOxDAQBmALgcRySDyCJRqagI-cdKsVl7QSFFBHk9gBIyc2tgOEikeg4_14Ery7tFSWf3_jGQ1CR5ScUkLYmW1PWcqLbAvNaJaWCcnyahvNCCtYUvKq2EV73j9HSfOcz9D3rQ2qVx9SYGv0BIPSapA_n1_BweBVUGbAvQygsXlXQuLW9NbEXPpzPF_fwEFQrxL7MIoJmw6DDtINMRwecTs6J4cQ4SDGNjoVJvyqIAbxQUOIfRtwTkmHn4y1q5reCKkP0E4H2svDv3MfPVxe3C-uk-Xt1c1ivkxazkmWZKwoeV6BkGVeMJFzRnnXMdGQjlRMFLKrSg5QNiByWjaCZWVKM15UDa9IC8D30fHmX-vMyyh9qJ_NGKfXvmaUpYQUWcqjOtmo1hnvnexq61QPbqopqVdrr21br9ceabKhb0rL6V9X3y02_hdP9Igf</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Megha, R.</creator><creator>Ravikiran, Y.T.</creator><creator>Vijaya Kumari, S.C.</creator><creator>Chandrasekhar, T.</creator><creator>Thomas, S.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9951-9501</orcidid></search><sort><creationdate>201810</creationdate><title>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</title><author>Megha, R. ; Ravikiran, Y.T. ; Vijaya Kumari, S.C. ; Chandrasekhar, T. ; Thomas, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative studies</topic><topic>Correlation analysis</topic><topic>Fourier transforms</topic><topic>Heterojunctions</topic><topic>Hopping conduction</topic><topic>Infrared spectroscopy</topic><topic>Niobium oxides</topic><topic>Organic chemistry</topic><topic>Particulate composites</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><topic>X-ray diffraction</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Megha, R.</creatorcontrib><creatorcontrib>Ravikiran, Y.T.</creatorcontrib><creatorcontrib>Vijaya Kumari, S.C.</creatorcontrib><creatorcontrib>Chandrasekhar, T.</creatorcontrib><creatorcontrib>Thomas, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megha, R.</au><au>Ravikiran, Y.T.</au><au>Vijaya Kumari, S.C.</au><au>Chandrasekhar, T.</au><au>Thomas, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</atitle><jtitle>Polymer composites</jtitle><date>2018-10</date><risdate>2018</risdate><volume>39</volume><issue>10</issue><spage>3545</spage><epage>3555</epage><pages>3545-3555</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pc.24375</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9951-9501</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2018-10, Vol.39 (10), p.3545-3555 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_journals_2124007543 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Comparative studies Correlation analysis Fourier transforms Heterojunctions Hopping conduction Infrared spectroscopy Niobium oxides Organic chemistry Particulate composites Polyanilines Polymers Scanning electron microscopy Titanium Titanium dioxide Transition metal oxides Transition metals X-ray diffraction Yttrium oxide |
title | Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20polyaniline%E2%80%90transition%20metal%20oxide%20composites:%20A%20comparative%20study%20of%20alternating%20current%20conductivity%20via%20correlated%20barrier%20hopping%20model&rft.jtitle=Polymer%20composites&rft.au=Megha,%20R.&rft.date=2018-10&rft.volume=39&rft.issue=10&rft.spage=3545&rft.epage=3555&rft.pages=3545-3555&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.24375&rft_dat=%3Cproquest_cross%3E2124007543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124007543&rft_id=info:pmid/&rfr_iscdi=true |