Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model

Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2018-10, Vol.39 (10), p.3545-3555
Hauptverfasser: Megha, R., Ravikiran, Y.T., Vijaya Kumari, S.C., Chandrasekhar, T., Thomas, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3555
container_issue 10
container_start_page 3545
container_title Polymer composites
container_volume 39
creator Megha, R.
Ravikiran, Y.T.
Vijaya Kumari, S.C.
Chandrasekhar, T.
Thomas, S.
description Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers
doi_str_mv 10.1002/pc.24375
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124007543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124007543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</originalsourceid><addsrcrecordid>eNp10LlOxDAQBmALgcRySDyCJRqagI-cdKsVl7QSFFBHk9gBIyc2tgOEikeg4_14Ery7tFSWf3_jGQ1CR5ScUkLYmW1PWcqLbAvNaJaWCcnyahvNCCtYUvKq2EV73j9HSfOcz9D3rQ2qVx9SYGv0BIPSapA_n1_BweBVUGbAvQygsXlXQuLW9NbEXPpzPF_fwEFQrxL7MIoJmw6DDtINMRwecTs6J4cQ4SDGNjoVJvyqIAbxQUOIfRtwTkmHn4y1q5reCKkP0E4H2svDv3MfPVxe3C-uk-Xt1c1ivkxazkmWZKwoeV6BkGVeMJFzRnnXMdGQjlRMFLKrSg5QNiByWjaCZWVKM15UDa9IC8D30fHmX-vMyyh9qJ_NGKfXvmaUpYQUWcqjOtmo1hnvnexq61QPbqopqVdrr21br9ceabKhb0rL6V9X3y02_hdP9Igf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124007543</pqid></control><display><type>article</type><title>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Megha, R. ; Ravikiran, Y.T. ; Vijaya Kumari, S.C. ; Chandrasekhar, T. ; Thomas, S.</creator><creatorcontrib>Megha, R. ; Ravikiran, Y.T. ; Vijaya Kumari, S.C. ; Chandrasekhar, T. ; Thomas, S.</creatorcontrib><description>Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.24375</identifier><language>eng</language><publisher>Newtown: Blackwell Publishing Ltd</publisher><subject>Comparative studies ; Correlation analysis ; Fourier transforms ; Heterojunctions ; Hopping conduction ; Infrared spectroscopy ; Niobium oxides ; Organic chemistry ; Particulate composites ; Polyanilines ; Polymers ; Scanning electron microscopy ; Titanium ; Titanium dioxide ; Transition metal oxides ; Transition metals ; X-ray diffraction ; Yttrium oxide</subject><ispartof>Polymer composites, 2018-10, Vol.39 (10), p.3545-3555</ispartof><rights>2017 Society of Plastics Engineers</rights><rights>2018 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</citedby><cites>FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</cites><orcidid>0000-0002-9951-9501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.24375$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.24375$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Megha, R.</creatorcontrib><creatorcontrib>Ravikiran, Y.T.</creatorcontrib><creatorcontrib>Vijaya Kumari, S.C.</creatorcontrib><creatorcontrib>Chandrasekhar, T.</creatorcontrib><creatorcontrib>Thomas, S.</creatorcontrib><title>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</title><title>Polymer composites</title><description>Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers</description><subject>Comparative studies</subject><subject>Correlation analysis</subject><subject>Fourier transforms</subject><subject>Heterojunctions</subject><subject>Hopping conduction</subject><subject>Infrared spectroscopy</subject><subject>Niobium oxides</subject><subject>Organic chemistry</subject><subject>Particulate composites</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><subject>X-ray diffraction</subject><subject>Yttrium oxide</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LlOxDAQBmALgcRySDyCJRqagI-cdKsVl7QSFFBHk9gBIyc2tgOEikeg4_14Ery7tFSWf3_jGQ1CR5ScUkLYmW1PWcqLbAvNaJaWCcnyahvNCCtYUvKq2EV73j9HSfOcz9D3rQ2qVx9SYGv0BIPSapA_n1_BweBVUGbAvQygsXlXQuLW9NbEXPpzPF_fwEFQrxL7MIoJmw6DDtINMRwecTs6J4cQ4SDGNjoVJvyqIAbxQUOIfRtwTkmHn4y1q5reCKkP0E4H2svDv3MfPVxe3C-uk-Xt1c1ivkxazkmWZKwoeV6BkGVeMJFzRnnXMdGQjlRMFLKrSg5QNiByWjaCZWVKM15UDa9IC8D30fHmX-vMyyh9qJ_NGKfXvmaUpYQUWcqjOtmo1hnvnexq61QPbqopqVdrr21br9ceabKhb0rL6V9X3y02_hdP9Igf</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Megha, R.</creator><creator>Ravikiran, Y.T.</creator><creator>Vijaya Kumari, S.C.</creator><creator>Chandrasekhar, T.</creator><creator>Thomas, S.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9951-9501</orcidid></search><sort><creationdate>201810</creationdate><title>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</title><author>Megha, R. ; Ravikiran, Y.T. ; Vijaya Kumari, S.C. ; Chandrasekhar, T. ; Thomas, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-5278369ade8672d63213ff2db0f092d7ef983aa8bad618bd258415379b390caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative studies</topic><topic>Correlation analysis</topic><topic>Fourier transforms</topic><topic>Heterojunctions</topic><topic>Hopping conduction</topic><topic>Infrared spectroscopy</topic><topic>Niobium oxides</topic><topic>Organic chemistry</topic><topic>Particulate composites</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><topic>X-ray diffraction</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Megha, R.</creatorcontrib><creatorcontrib>Ravikiran, Y.T.</creatorcontrib><creatorcontrib>Vijaya Kumari, S.C.</creatorcontrib><creatorcontrib>Chandrasekhar, T.</creatorcontrib><creatorcontrib>Thomas, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megha, R.</au><au>Ravikiran, Y.T.</au><au>Vijaya Kumari, S.C.</au><au>Chandrasekhar, T.</au><au>Thomas, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model</atitle><jtitle>Polymer composites</jtitle><date>2018-10</date><risdate>2018</risdate><volume>39</volume><issue>10</issue><spage>3545</spage><epage>3555</epage><pages>3545-3555</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Optimized polyaniline‐yttrium oxide (PANI‐Y2O3), polyaniline‐niobium pentoxide (PANI‐Nb2O5), and polyaniline‐titanium dioxide (PANI‐TiO2) composites were prepared by mechanical mixing of chemically synthesized PANI with Y2O3, Nb2O5, and TiO2 transition metal oxides respectively. The PANI and the composites were structurally characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Improved π‐electron delocalization in PANI‐Nb2O5 composite as compared to those in PANI and other composites was confirmed from FTIR and XRD analysis. Highly agglomerated, more densely packed spherical particles of PANI‐Nb2O5 composite than those of pristine PANI and other composites was confirmed by comparative study of their SEM images. Increase in AC conductivity of PANI‐Nb2O5 composite as compared to that of PANI and other composites due to the formation of interfacial heterojunction barrier between p‐type PANI and n‐type Nb2O5 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance, and density of states at Fermi level as per correlated barrier hopping model. POLYM. COMPOS., 39:3545–3555, 2018. © 2017 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pc.24375</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9951-9501</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2018-10, Vol.39 (10), p.3545-3555
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2124007543
source Wiley Online Library Journals Frontfile Complete
subjects Comparative studies
Correlation analysis
Fourier transforms
Heterojunctions
Hopping conduction
Infrared spectroscopy
Niobium oxides
Organic chemistry
Particulate composites
Polyanilines
Polymers
Scanning electron microscopy
Titanium
Titanium dioxide
Transition metal oxides
Transition metals
X-ray diffraction
Yttrium oxide
title Optimized polyaniline‐transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20polyaniline%E2%80%90transition%20metal%20oxide%20composites:%20A%20comparative%20study%20of%20alternating%20current%20conductivity%20via%20correlated%20barrier%20hopping%20model&rft.jtitle=Polymer%20composites&rft.au=Megha,%20R.&rft.date=2018-10&rft.volume=39&rft.issue=10&rft.spage=3545&rft.epage=3555&rft.pages=3545-3555&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.24375&rft_dat=%3Cproquest_cross%3E2124007543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124007543&rft_id=info:pmid/&rfr_iscdi=true