In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif

DNA-binding motif of bacterioopsin activator (Bat) protein is a Helix–Turn–Helix motif, which binds to bop promoter and induces bacterioopsin (Bop) expression under light and low oxygen tension. Bacterioopsin is linked to retinal to produce bacteriorhodopsin (BR), which in turn supplies energy sourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremophiles : life under extreme conditions 2019-01, Vol.23 (1), p.59-67
Hauptverfasser: Mirfeizollahi, Azadeh, Yakhchali, Bagher, Deldar, Ali Asghar, Karkhane, Ali Asghar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 59
container_title Extremophiles : life under extreme conditions
container_volume 23
creator Mirfeizollahi, Azadeh
Yakhchali, Bagher
Deldar, Ali Asghar
Karkhane, Ali Asghar
description DNA-binding motif of bacterioopsin activator (Bat) protein is a Helix–Turn–Helix motif, which binds to bop promoter and induces bacterioopsin (Bop) expression under light and low oxygen tension. Bacterioopsin is linked to retinal to produce bacteriorhodopsin (BR), which in turn supplies energy source in Halobacterium salinarum . In this study, effect of Bat HTH motif–promoter DNA interaction on bacterioopsin (Bop) expression was investigated using in silico and experimental approaches. Molecular docking showed that the most stable DNA–protein complex was generated by Q661R/Q665R mutant. Based on the in silico analysis, HTH motif was mutated using site-directed mutagenesis and Hbt. salinarum recombinant strains were developed by introduction of mutant bat genes. Double positively charged amino acid substitutions (Q661R/Q665R) in second helix of HTH motif increased whereas deletion of this region decreased BR production. However, other single substitutions (Q665R and Q661H) did not change BR production. These findings represent key role of HTH motif stability for DNA binding and regulation of bacterioopsin (Bop) expression and bacteriorhodopsin (BR) production independent of environmental condition.
doi_str_mv 10.1007/s00792-018-1060-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123990176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123990176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-71b0680fe06c8c3eea1049b451c4f9628e65ed9d602122b1e514a02cbd1c69473</originalsourceid><addsrcrecordid>eNp1UcFu1DAQjRCIlsIHcEGWOJvOOLGzOZYW2EoViFU5W7bj7LpK7MV2EPtx_BtOd4ETl_GM3nvzNH5V9RrhHQK0l6mUjlHAFUUQQPmT6hybuqZNB93Txx4pCI5n1YuUHgCQF-B5dVZDzYExfl79uvUkudGZQJTvif25t9FN1mc1EjftY_hhl4mEgWhlcgFD3IU-7JPzpMD9bLILnpRprcZw4swTSWp0XsXSbZDoQyGYaFVRbcnN5yuqne-XXg2D8y4fFoP3KpO8i2He7shXIXBzWSrfkDTrlF2eF6P06HS_JlPIbnhZPRvUmOyr03tRffv44f56Te--fLq9vrqjpm5Zpi1qECsYLAizMrW1CqHpdMPRNEMn2MoKbvuuF8CQMY2WY6OAGd2jEV3T1hfV2-PecvH32aYsH8IcfbGURVF3HWArCguPLBNDStEOcl_-UsWDRJBLYPIYmCyBySUwyYvmzWnzrCfb_1X8SagQ2JGQCuS3Nv6z_v_W301vorc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123990176</pqid></control><display><type>article</type><title>In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Mirfeizollahi, Azadeh ; Yakhchali, Bagher ; Deldar, Ali Asghar ; Karkhane, Ali Asghar</creator><creatorcontrib>Mirfeizollahi, Azadeh ; Yakhchali, Bagher ; Deldar, Ali Asghar ; Karkhane, Ali Asghar</creatorcontrib><description>DNA-binding motif of bacterioopsin activator (Bat) protein is a Helix–Turn–Helix motif, which binds to bop promoter and induces bacterioopsin (Bop) expression under light and low oxygen tension. Bacterioopsin is linked to retinal to produce bacteriorhodopsin (BR), which in turn supplies energy source in Halobacterium salinarum . In this study, effect of Bat HTH motif–promoter DNA interaction on bacterioopsin (Bop) expression was investigated using in silico and experimental approaches. Molecular docking showed that the most stable DNA–protein complex was generated by Q661R/Q665R mutant. Based on the in silico analysis, HTH motif was mutated using site-directed mutagenesis and Hbt. salinarum recombinant strains were developed by introduction of mutant bat genes. Double positively charged amino acid substitutions (Q661R/Q665R) in second helix of HTH motif increased whereas deletion of this region decreased BR production. However, other single substitutions (Q665R and Q661H) did not change BR production. These findings represent key role of HTH motif stability for DNA binding and regulation of bacterioopsin (Bop) expression and bacteriorhodopsin (BR) production independent of environmental condition.</description><identifier>ISSN: 1431-0651</identifier><identifier>EISSN: 1433-4909</identifier><identifier>DOI: 10.1007/s00792-018-1060-5</identifier><identifier>PMID: 30350225</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Amino acids ; Bacteriorhodopsin ; Bacteriorhodopsins - genetics ; Bacteriorhodopsins - metabolism ; Binding ; Binding Sites ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Deoxyribonucleic acid ; DNA ; Energy sources ; Environmental conditions ; Gene expression ; Halobacterium salinarum ; Halobacterium salinarum - genetics ; Halobacterium salinarum - metabolism ; Industrial Microbiology - methods ; Life Sciences ; Microbial Ecology ; Microbiology ; Molecular docking ; Molecular Docking Simulation ; Mutagenesis ; Mutation, Missense ; Original Paper ; Oxygen tension ; Promoter Regions, Genetic ; Promoters ; Protein Binding ; Proteins ; Recombinants ; Retina ; Site-directed mutagenesis ; Stability ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Extremophiles : life under extreme conditions, 2019-01, Vol.23 (1), p.59-67</ispartof><rights>Springer Japan KK, part of Springer Nature 2018</rights><rights>Extremophiles is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-71b0680fe06c8c3eea1049b451c4f9628e65ed9d602122b1e514a02cbd1c69473</citedby><cites>FETCH-LOGICAL-c372t-71b0680fe06c8c3eea1049b451c4f9628e65ed9d602122b1e514a02cbd1c69473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00792-018-1060-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00792-018-1060-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30350225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirfeizollahi, Azadeh</creatorcontrib><creatorcontrib>Yakhchali, Bagher</creatorcontrib><creatorcontrib>Deldar, Ali Asghar</creatorcontrib><creatorcontrib>Karkhane, Ali Asghar</creatorcontrib><title>In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif</title><title>Extremophiles : life under extreme conditions</title><addtitle>Extremophiles</addtitle><addtitle>Extremophiles</addtitle><description>DNA-binding motif of bacterioopsin activator (Bat) protein is a Helix–Turn–Helix motif, which binds to bop promoter and induces bacterioopsin (Bop) expression under light and low oxygen tension. Bacterioopsin is linked to retinal to produce bacteriorhodopsin (BR), which in turn supplies energy source in Halobacterium salinarum . In this study, effect of Bat HTH motif–promoter DNA interaction on bacterioopsin (Bop) expression was investigated using in silico and experimental approaches. Molecular docking showed that the most stable DNA–protein complex was generated by Q661R/Q665R mutant. Based on the in silico analysis, HTH motif was mutated using site-directed mutagenesis and Hbt. salinarum recombinant strains were developed by introduction of mutant bat genes. Double positively charged amino acid substitutions (Q661R/Q665R) in second helix of HTH motif increased whereas deletion of this region decreased BR production. However, other single substitutions (Q665R and Q661H) did not change BR production. These findings represent key role of HTH motif stability for DNA binding and regulation of bacterioopsin (Bop) expression and bacteriorhodopsin (BR) production independent of environmental condition.</description><subject>Amino acids</subject><subject>Bacteriorhodopsin</subject><subject>Bacteriorhodopsins - genetics</subject><subject>Bacteriorhodopsins - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Energy sources</subject><subject>Environmental conditions</subject><subject>Gene expression</subject><subject>Halobacterium salinarum</subject><subject>Halobacterium salinarum - genetics</subject><subject>Halobacterium salinarum - metabolism</subject><subject>Industrial Microbiology - methods</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Mutagenesis</subject><subject>Mutation, Missense</subject><subject>Original Paper</subject><subject>Oxygen tension</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Recombinants</subject><subject>Retina</subject><subject>Site-directed mutagenesis</subject><subject>Stability</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1431-0651</issn><issn>1433-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UcFu1DAQjRCIlsIHcEGWOJvOOLGzOZYW2EoViFU5W7bj7LpK7MV2EPtx_BtOd4ETl_GM3nvzNH5V9RrhHQK0l6mUjlHAFUUQQPmT6hybuqZNB93Txx4pCI5n1YuUHgCQF-B5dVZDzYExfl79uvUkudGZQJTvif25t9FN1mc1EjftY_hhl4mEgWhlcgFD3IU-7JPzpMD9bLILnpRprcZw4swTSWp0XsXSbZDoQyGYaFVRbcnN5yuqne-XXg2D8y4fFoP3KpO8i2He7shXIXBzWSrfkDTrlF2eF6P06HS_JlPIbnhZPRvUmOyr03tRffv44f56Te--fLq9vrqjpm5Zpi1qECsYLAizMrW1CqHpdMPRNEMn2MoKbvuuF8CQMY2WY6OAGd2jEV3T1hfV2-PecvH32aYsH8IcfbGURVF3HWArCguPLBNDStEOcl_-UsWDRJBLYPIYmCyBySUwyYvmzWnzrCfb_1X8SagQ2JGQCuS3Nv6z_v_W301vorc</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mirfeizollahi, Azadeh</creator><creator>Yakhchali, Bagher</creator><creator>Deldar, Ali Asghar</creator><creator>Karkhane, Ali Asghar</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif</title><author>Mirfeizollahi, Azadeh ; Yakhchali, Bagher ; Deldar, Ali Asghar ; Karkhane, Ali Asghar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-71b0680fe06c8c3eea1049b451c4f9628e65ed9d602122b1e514a02cbd1c69473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Bacteriorhodopsin</topic><topic>Bacteriorhodopsins - genetics</topic><topic>Bacteriorhodopsins - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Energy sources</topic><topic>Environmental conditions</topic><topic>Gene expression</topic><topic>Halobacterium salinarum</topic><topic>Halobacterium salinarum - genetics</topic><topic>Halobacterium salinarum - metabolism</topic><topic>Industrial Microbiology - methods</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Mutagenesis</topic><topic>Mutation, Missense</topic><topic>Original Paper</topic><topic>Oxygen tension</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Recombinants</topic><topic>Retina</topic><topic>Site-directed mutagenesis</topic><topic>Stability</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirfeizollahi, Azadeh</creatorcontrib><creatorcontrib>Yakhchali, Bagher</creatorcontrib><creatorcontrib>Deldar, Ali Asghar</creatorcontrib><creatorcontrib>Karkhane, Ali Asghar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Extremophiles : life under extreme conditions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirfeizollahi, Azadeh</au><au>Yakhchali, Bagher</au><au>Deldar, Ali Asghar</au><au>Karkhane, Ali Asghar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif</atitle><jtitle>Extremophiles : life under extreme conditions</jtitle><stitle>Extremophiles</stitle><addtitle>Extremophiles</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>59</spage><epage>67</epage><pages>59-67</pages><issn>1431-0651</issn><eissn>1433-4909</eissn><abstract>DNA-binding motif of bacterioopsin activator (Bat) protein is a Helix–Turn–Helix motif, which binds to bop promoter and induces bacterioopsin (Bop) expression under light and low oxygen tension. Bacterioopsin is linked to retinal to produce bacteriorhodopsin (BR), which in turn supplies energy source in Halobacterium salinarum . In this study, effect of Bat HTH motif–promoter DNA interaction on bacterioopsin (Bop) expression was investigated using in silico and experimental approaches. Molecular docking showed that the most stable DNA–protein complex was generated by Q661R/Q665R mutant. Based on the in silico analysis, HTH motif was mutated using site-directed mutagenesis and Hbt. salinarum recombinant strains were developed by introduction of mutant bat genes. Double positively charged amino acid substitutions (Q661R/Q665R) in second helix of HTH motif increased whereas deletion of this region decreased BR production. However, other single substitutions (Q665R and Q661H) did not change BR production. These findings represent key role of HTH motif stability for DNA binding and regulation of bacterioopsin (Bop) expression and bacteriorhodopsin (BR) production independent of environmental condition.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>30350225</pmid><doi>10.1007/s00792-018-1060-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-0651
ispartof Extremophiles : life under extreme conditions, 2019-01, Vol.23 (1), p.59-67
issn 1431-0651
1433-4909
language eng
recordid cdi_proquest_journals_2123990176
source MEDLINE; SpringerNature Journals
subjects Amino acids
Bacteriorhodopsin
Bacteriorhodopsins - genetics
Bacteriorhodopsins - metabolism
Binding
Binding Sites
Biochemistry
Biomedical and Life Sciences
Biotechnology
Deoxyribonucleic acid
DNA
Energy sources
Environmental conditions
Gene expression
Halobacterium salinarum
Halobacterium salinarum - genetics
Halobacterium salinarum - metabolism
Industrial Microbiology - methods
Life Sciences
Microbial Ecology
Microbiology
Molecular docking
Molecular Docking Simulation
Mutagenesis
Mutation, Missense
Original Paper
Oxygen tension
Promoter Regions, Genetic
Promoters
Protein Binding
Proteins
Recombinants
Retina
Site-directed mutagenesis
Stability
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
title In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20and%20experimental%20improvement%20of%20bacteriorhodopsin%20production%20in%20Halobacterium%20salinarum%20R1%20by%20increasing%20DNA-binding%20affinity%20of%20Bat%20through%20Q661R/Q665R%20substitutions%20in%20HTH%20motif&rft.jtitle=Extremophiles%20:%20life%20under%20extreme%20conditions&rft.au=Mirfeizollahi,%20Azadeh&rft.date=2019-01-01&rft.volume=23&rft.issue=1&rft.spage=59&rft.epage=67&rft.pages=59-67&rft.issn=1431-0651&rft.eissn=1433-4909&rft_id=info:doi/10.1007/s00792-018-1060-5&rft_dat=%3Cproquest_cross%3E2123990176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123990176&rft_id=info:pmid/30350225&rfr_iscdi=true