Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors

The ultimate performance—ratio of electrical conductivity to optical absorbance—of single-walled carbon nanotube (SWCNT) transparent conductive films (TCFs) is an issue of considerable application relevance. Here, we present direct experimental evidence that SWCNT bundling is detrimental for their p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-10, Vol.107 (14)
Hauptverfasser: Mustonen, K., Laiho, P., Kaskela, A., Susi, T., Nasibulin, A. G., Kauppinen, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Applied physics letters
container_volume 107
creator Mustonen, K.
Laiho, P.
Kaskela, A.
Susi, T.
Nasibulin, A. G.
Kauppinen, E. I.
description The ultimate performance—ratio of electrical conductivity to optical absorbance—of single-walled carbon nanotube (SWCNT) transparent conductive films (TCFs) is an issue of considerable application relevance. Here, we present direct experimental evidence that SWCNT bundling is detrimental for their performance. We combine floating catalyst synthesis of non-bundled, high-quality SWCNTs with an aggregation chamber, in which bundles with mean diameters ranging from 1.38 to 2.90 nm are formed from identical 3 μm long SWCNTs. The as-deposited TCFs from 1.38 nm bundles showed sheet resistances of 310 Ω/□ at 90% transparency, while those from larger bundles of 1.80 and 2.90 nm only reached values of 475 and 670 Ω/□, respectively. Based on these observations, we elucidate how networks formed by smaller bundles perform better due to their greater interconnectivity at a given optical density. Finally, we present a semi-empirical model for TCF performance as a function of SWCNT mean length and bundle diameter. This gives an estimate for the ultimate performance of non-doped, random network mixed-metallicity SWCNT TCFs at ∼80 Ω/□ and 90% transparency.
doi_str_mv 10.1063/1.4932942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123860845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123860845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-df8f58d8dbe1b32909ffa87c16e7569adf974be003a5b7d7079b1579b113c01a3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK4e_AcBTx66ZpqmSY-y-AULXtxzSZOJdukmNUkV_71ddi8zDDy8w_MScgtsBazmD7CqGl42VXlGFsCkLDiAOicLxhgv6kbAJblKaTefouR8QezWm_CDsfefNH8hnYbc73VGOmJ0Ie61N0iDo2kGBix-9TCgpUbHLnjqtQ956pC6ftgnqhPNUfs06og-UxO8nUwOMV2TC6eHhDenvSTb56eP9WuxeX95Wz9uCsOFyoV1ygllle0QulmCNc5pJQ3UKEXdaOsaWXU4m2jRSSuZbDoQhwHcMNB8Se6OuWMM3xOm3O7CFP38si2h5KpmqhIzdX-kTAwpRXTtGGfn-NcCaw8lttCeSuT_yCNlWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123860845</pqid></control><display><type>article</type><title>Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mustonen, K. ; Laiho, P. ; Kaskela, A. ; Susi, T. ; Nasibulin, A. G. ; Kauppinen, E. I.</creator><creatorcontrib>Mustonen, K. ; Laiho, P. ; Kaskela, A. ; Susi, T. ; Nasibulin, A. G. ; Kauppinen, E. I.</creatorcontrib><description>The ultimate performance—ratio of electrical conductivity to optical absorbance—of single-walled carbon nanotube (SWCNT) transparent conductive films (TCFs) is an issue of considerable application relevance. Here, we present direct experimental evidence that SWCNT bundling is detrimental for their performance. We combine floating catalyst synthesis of non-bundled, high-quality SWCNTs with an aggregation chamber, in which bundles with mean diameters ranging from 1.38 to 2.90 nm are formed from identical 3 μm long SWCNTs. The as-deposited TCFs from 1.38 nm bundles showed sheet resistances of 310 Ω/□ at 90% transparency, while those from larger bundles of 1.80 and 2.90 nm only reached values of 475 and 670 Ω/□, respectively. Based on these observations, we elucidate how networks formed by smaller bundles perform better due to their greater interconnectivity at a given optical density. Finally, we present a semi-empirical model for TCF performance as a function of SWCNT mean length and bundle diameter. This gives an estimate for the ultimate performance of non-doped, random network mixed-metallicity SWCNT TCFs at ∼80 Ω/□ and 90% transparency.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4932942</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bundles ; Bundling ; Chemical synthesis ; Conductors ; Electrical resistivity ; Metallicity ; Nanotubes ; Optical density ; Single wall carbon nanotubes</subject><ispartof>Applied physics letters, 2015-10, Vol.107 (14)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-df8f58d8dbe1b32909ffa87c16e7569adf974be003a5b7d7079b1579b113c01a3</citedby><cites>FETCH-LOGICAL-c358t-df8f58d8dbe1b32909ffa87c16e7569adf974be003a5b7d7079b1579b113c01a3</cites><orcidid>0000-0003-2513-573X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mustonen, K.</creatorcontrib><creatorcontrib>Laiho, P.</creatorcontrib><creatorcontrib>Kaskela, A.</creatorcontrib><creatorcontrib>Susi, T.</creatorcontrib><creatorcontrib>Nasibulin, A. G.</creatorcontrib><creatorcontrib>Kauppinen, E. I.</creatorcontrib><title>Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors</title><title>Applied physics letters</title><description>The ultimate performance—ratio of electrical conductivity to optical absorbance—of single-walled carbon nanotube (SWCNT) transparent conductive films (TCFs) is an issue of considerable application relevance. Here, we present direct experimental evidence that SWCNT bundling is detrimental for their performance. We combine floating catalyst synthesis of non-bundled, high-quality SWCNTs with an aggregation chamber, in which bundles with mean diameters ranging from 1.38 to 2.90 nm are formed from identical 3 μm long SWCNTs. The as-deposited TCFs from 1.38 nm bundles showed sheet resistances of 310 Ω/□ at 90% transparency, while those from larger bundles of 1.80 and 2.90 nm only reached values of 475 and 670 Ω/□, respectively. Based on these observations, we elucidate how networks formed by smaller bundles perform better due to their greater interconnectivity at a given optical density. Finally, we present a semi-empirical model for TCF performance as a function of SWCNT mean length and bundle diameter. This gives an estimate for the ultimate performance of non-doped, random network mixed-metallicity SWCNT TCFs at ∼80 Ω/□ and 90% transparency.</description><subject>Applied physics</subject><subject>Bundles</subject><subject>Bundling</subject><subject>Chemical synthesis</subject><subject>Conductors</subject><subject>Electrical resistivity</subject><subject>Metallicity</subject><subject>Nanotubes</subject><subject>Optical density</subject><subject>Single wall carbon nanotubes</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK4e_AcBTx66ZpqmSY-y-AULXtxzSZOJdukmNUkV_71ddi8zDDy8w_MScgtsBazmD7CqGl42VXlGFsCkLDiAOicLxhgv6kbAJblKaTefouR8QezWm_CDsfefNH8hnYbc73VGOmJ0Ie61N0iDo2kGBix-9TCgpUbHLnjqtQ956pC6ftgnqhPNUfs06og-UxO8nUwOMV2TC6eHhDenvSTb56eP9WuxeX95Wz9uCsOFyoV1ygllle0QulmCNc5pJQ3UKEXdaOsaWXU4m2jRSSuZbDoQhwHcMNB8Se6OuWMM3xOm3O7CFP38si2h5KpmqhIzdX-kTAwpRXTtGGfn-NcCaw8lttCeSuT_yCNlWA</recordid><startdate>20151005</startdate><enddate>20151005</enddate><creator>Mustonen, K.</creator><creator>Laiho, P.</creator><creator>Kaskela, A.</creator><creator>Susi, T.</creator><creator>Nasibulin, A. G.</creator><creator>Kauppinen, E. I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2513-573X</orcidid></search><sort><creationdate>20151005</creationdate><title>Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors</title><author>Mustonen, K. ; Laiho, P. ; Kaskela, A. ; Susi, T. ; Nasibulin, A. G. ; Kauppinen, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-df8f58d8dbe1b32909ffa87c16e7569adf974be003a5b7d7079b1579b113c01a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Bundles</topic><topic>Bundling</topic><topic>Chemical synthesis</topic><topic>Conductors</topic><topic>Electrical resistivity</topic><topic>Metallicity</topic><topic>Nanotubes</topic><topic>Optical density</topic><topic>Single wall carbon nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mustonen, K.</creatorcontrib><creatorcontrib>Laiho, P.</creatorcontrib><creatorcontrib>Kaskela, A.</creatorcontrib><creatorcontrib>Susi, T.</creatorcontrib><creatorcontrib>Nasibulin, A. G.</creatorcontrib><creatorcontrib>Kauppinen, E. I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mustonen, K.</au><au>Laiho, P.</au><au>Kaskela, A.</au><au>Susi, T.</au><au>Nasibulin, A. G.</au><au>Kauppinen, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors</atitle><jtitle>Applied physics letters</jtitle><date>2015-10-05</date><risdate>2015</risdate><volume>107</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>The ultimate performance—ratio of electrical conductivity to optical absorbance—of single-walled carbon nanotube (SWCNT) transparent conductive films (TCFs) is an issue of considerable application relevance. Here, we present direct experimental evidence that SWCNT bundling is detrimental for their performance. We combine floating catalyst synthesis of non-bundled, high-quality SWCNTs with an aggregation chamber, in which bundles with mean diameters ranging from 1.38 to 2.90 nm are formed from identical 3 μm long SWCNTs. The as-deposited TCFs from 1.38 nm bundles showed sheet resistances of 310 Ω/□ at 90% transparency, while those from larger bundles of 1.80 and 2.90 nm only reached values of 475 and 670 Ω/□, respectively. Based on these observations, we elucidate how networks formed by smaller bundles perform better due to their greater interconnectivity at a given optical density. Finally, we present a semi-empirical model for TCF performance as a function of SWCNT mean length and bundle diameter. This gives an estimate for the ultimate performance of non-doped, random network mixed-metallicity SWCNT TCFs at ∼80 Ω/□ and 90% transparency.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4932942</doi><orcidid>https://orcid.org/0000-0003-2513-573X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-10, Vol.107 (14)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2123860845
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Bundles
Bundling
Chemical synthesis
Conductors
Electrical resistivity
Metallicity
Nanotubes
Optical density
Single wall carbon nanotubes
title Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20the%20ultimate%20performance%20of%20single-walled%20carbon%20nanotube%20films%20as%20transparent%20conductors&rft.jtitle=Applied%20physics%20letters&rft.au=Mustonen,%20K.&rft.date=2015-10-05&rft.volume=107&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4932942&rft_dat=%3Cproquest_cross%3E2123860845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123860845&rft_id=info:pmid/&rfr_iscdi=true