A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge

In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1684
description In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms.
doi_str_mv 10.1063/1.4934336
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2123850529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123850529</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-f94e3c7adbfc40ea5eafa850e1bff9963dd4911cbecece6e6804d41fac04e25a3</originalsourceid><addsrcrecordid>eNotjsFLwzAYxYMoWKcH_4OA58ykSdPmOIY6oehBBU-Or-2XmrklXdM6_3zLlHd4D37w3iPkWvC54FreirkyUkmpT0giskywXAt9ShLOjWKpku_n5CLGDeepyfMiIR8LGnHnWAltD7514Cl0XR9-3A4GFzx1ng6fSJ_g22HPXobwhZHifjzSSG3oj7yFKW_DgUIfRt9QoAdsWrwkZxa2Ea_-fUbe7u9elytWPj88Lhcl60QhB2aNQlnn0FS2VhwhQ7BQZBxFZa0xWjaNMkLUFdaTNOqCq0YJCzVXmGYgZ-Tmr3e6vh8xDutNGHs_Ta5TkcqpKkuN_AWjg1Ze</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2123850529</pqid></control><display><type>conference_proceeding</type><title>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</title><source>AIP Journals Complete</source><description>In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4934336</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Computational fluid dynamics ; Finite element method ; Fluid flow ; Gas flow ; Heat transmission ; Internal energy ; Mathematical analysis ; Navier-Stokes equations ; Rectangles ; Time dependence ; Trajectories ; Triangles ; Triangulation</subject><ispartof>AIP Conference Proceedings, 2015, Vol.1684 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,781,785,790,791,23935,23936,25145,27930</link.rule.ids></links><search><title>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</title><title>AIP Conference Proceedings</title><description>In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms.</description><subject>Approximation</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Heat transmission</subject><subject>Internal energy</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Rectangles</subject><subject>Time dependence</subject><subject>Trajectories</subject><subject>Triangles</subject><subject>Triangulation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjsFLwzAYxYMoWKcH_4OA58ykSdPmOIY6oehBBU-Or-2XmrklXdM6_3zLlHd4D37w3iPkWvC54FreirkyUkmpT0giskywXAt9ShLOjWKpku_n5CLGDeepyfMiIR8LGnHnWAltD7514Cl0XR9-3A4GFzx1ng6fSJ_g22HPXobwhZHifjzSSG3oj7yFKW_DgUIfRt9QoAdsWrwkZxa2Ea_-fUbe7u9elytWPj88Lhcl60QhB2aNQlnn0FS2VhwhQ7BQZBxFZa0xWjaNMkLUFdaTNOqCq0YJCzVXmGYgZ-Tmr3e6vh8xDutNGHs_Ta5TkcqpKkuN_AWjg1Ze</recordid><startdate>20151028</startdate><enddate>20151028</enddate><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151028</creationdate><title>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-f94e3c7adbfc40ea5eafa850e1bff9963dd4911cbecece6e6804d41fac04e25a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Heat transmission</topic><topic>Internal energy</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Rectangles</topic><topic>Time dependence</topic><topic>Trajectories</topic><topic>Triangles</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</atitle><btitle>AIP Conference Proceedings</btitle><date>2015-10-28</date><risdate>2015</risdate><volume>1684</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4934336</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2015, Vol.1684 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2123850529
source AIP Journals Complete
subjects Approximation
Computational fluid dynamics
Finite element method
Fluid flow
Gas flow
Heat transmission
Internal energy
Mathematical analysis
Navier-Stokes equations
Rectangles
Time dependence
Trajectories
Triangles
Triangulation
title A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20semi-Lagrangian%20approximation%20in%20the%20Navier-Stokes%20equations%20for%20the%20gas%20flow%20around%20a%20wedge&rft.btitle=AIP%20Conference%20Proceedings&rft.date=2015-10-28&rft.volume=1684&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4934336&rft_dat=%3Cproquest%3E2123850529%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123850529&rft_id=info:pmid/&rfr_iscdi=true