A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge
In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (...
Gespeichert in:
Format: | Tagungsbericht |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1684 |
description | In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms. |
doi_str_mv | 10.1063/1.4934336 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2123850529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123850529</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-f94e3c7adbfc40ea5eafa850e1bff9963dd4911cbecece6e6804d41fac04e25a3</originalsourceid><addsrcrecordid>eNotjsFLwzAYxYMoWKcH_4OA58ykSdPmOIY6oehBBU-Or-2XmrklXdM6_3zLlHd4D37w3iPkWvC54FreirkyUkmpT0giskywXAt9ShLOjWKpku_n5CLGDeepyfMiIR8LGnHnWAltD7514Cl0XR9-3A4GFzx1ng6fSJ_g22HPXobwhZHifjzSSG3oj7yFKW_DgUIfRt9QoAdsWrwkZxa2Ea_-fUbe7u9elytWPj88Lhcl60QhB2aNQlnn0FS2VhwhQ7BQZBxFZa0xWjaNMkLUFdaTNOqCq0YJCzVXmGYgZ-Tmr3e6vh8xDutNGHs_Ta5TkcqpKkuN_AWjg1Ze</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2123850529</pqid></control><display><type>conference_proceeding</type><title>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</title><source>AIP Journals Complete</source><description>In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4934336</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Computational fluid dynamics ; Finite element method ; Fluid flow ; Gas flow ; Heat transmission ; Internal energy ; Mathematical analysis ; Navier-Stokes equations ; Rectangles ; Time dependence ; Trajectories ; Triangles ; Triangulation</subject><ispartof>AIP Conference Proceedings, 2015, Vol.1684 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,781,785,790,791,23935,23936,25145,27930</link.rule.ids></links><search><title>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</title><title>AIP Conference Proceedings</title><description>In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms.</description><subject>Approximation</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Heat transmission</subject><subject>Internal energy</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Rectangles</subject><subject>Time dependence</subject><subject>Trajectories</subject><subject>Triangles</subject><subject>Triangulation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjsFLwzAYxYMoWKcH_4OA58ykSdPmOIY6oehBBU-Or-2XmrklXdM6_3zLlHd4D37w3iPkWvC54FreirkyUkmpT0giskywXAt9ShLOjWKpku_n5CLGDeepyfMiIR8LGnHnWAltD7514Cl0XR9-3A4GFzx1ng6fSJ_g22HPXobwhZHifjzSSG3oj7yFKW_DgUIfRt9QoAdsWrwkZxa2Ea_-fUbe7u9elytWPj88Lhcl60QhB2aNQlnn0FS2VhwhQ7BQZBxFZa0xWjaNMkLUFdaTNOqCq0YJCzVXmGYgZ-Tmr3e6vh8xDutNGHs_Ta5TkcqpKkuN_AWjg1Ze</recordid><startdate>20151028</startdate><enddate>20151028</enddate><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151028</creationdate><title>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-f94e3c7adbfc40ea5eafa850e1bff9963dd4911cbecece6e6804d41fac04e25a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Heat transmission</topic><topic>Internal energy</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Rectangles</topic><topic>Time dependence</topic><topic>Trajectories</topic><topic>Triangles</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge</atitle><btitle>AIP Conference Proceedings</btitle><date>2015-10-28</date><risdate>2015</risdate><volume>1684</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4934336</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2015, Vol.1684 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2123850529 |
source | AIP Journals Complete |
subjects | Approximation Computational fluid dynamics Finite element method Fluid flow Gas flow Heat transmission Internal energy Mathematical analysis Navier-Stokes equations Rectangles Time dependence Trajectories Triangles Triangulation |
title | A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20semi-Lagrangian%20approximation%20in%20the%20Navier-Stokes%20equations%20for%20the%20gas%20flow%20around%20a%20wedge&rft.btitle=AIP%20Conference%20Proceedings&rft.date=2015-10-28&rft.volume=1684&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4934336&rft_dat=%3Cproquest%3E2123850529%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123850529&rft_id=info:pmid/&rfr_iscdi=true |