Transition probabilities of normal states determine the Jordan structure of a quantum system
Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2016-01, Vol.57 (1), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 57 |
creator | Leung, Chi-Wai Ng, Chi-Keung Wong, Ngai-Ching |
description | Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras. |
doi_str_mv | 10.1063/1.4936404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123761692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3959873791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoWnaQ_-BoKcenGr19rGEPgn0kt4KZm1J1CG2E0k-5N_XITn3tOzOxw4zhNwDWwDT4gkWshRaMnlBZsBsWRit7CWZMcZ5waW11-QmpQ1jAFbKGflZR-xTm9uhp7s41Fi322nziQ6B9kPscEtTxjwdnM8-dm3vaf719HOIDvtJi2OTx-iPPNL9iH0eO5oOKfvullwF3CZ_d55z8v36sl6-F6uvt4_l86pouFW5AGelUUpjML42tQyeY60dYFCBQWmYs0o5USorUQjFlWTKS3Sl44hgg5iTh9PfKcF-9ClXm2GM_WRZceDCaNAl_48Cow1IEKWcqMcT1cQhpehDtYtth_FQAauOFVdQnSsWf294baY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767141394</pqid></control><display><type>article</type><title>Transition probabilities of normal states determine the Jordan structure of a quantum system</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Leung, Chi-Wai ; Ng, Chi-Keung ; Wong, Ngai-Ching</creator><creatorcontrib>Leung, Chi-Wai ; Ng, Chi-Keung ; Wong, Ngai-Ching</creatorcontrib><description>Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4936404</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Asymmetry ; Bonds ; Isomorphism ; Long term ; Physics ; Probability ; Quantum physics ; Quantum theory ; Transition probabilities</subject><ispartof>Journal of mathematical physics, 2016-01, Vol.57 (1), p.1</ispartof><rights>Copyright American Institute of Physics Jan 2016</rights><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</citedby><cites>FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</cites><orcidid>0000-0002-1445-5335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leung, Chi-Wai</creatorcontrib><creatorcontrib>Ng, Chi-Keung</creatorcontrib><creatorcontrib>Wong, Ngai-Ching</creatorcontrib><title>Transition probabilities of normal states determine the Jordan structure of a quantum system</title><title>Journal of mathematical physics</title><description>Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras.</description><subject>Algebra</subject><subject>Asymmetry</subject><subject>Bonds</subject><subject>Isomorphism</subject><subject>Long term</subject><subject>Physics</subject><subject>Probability</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>Transition probabilities</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoWnaQ_-BoKcenGr19rGEPgn0kt4KZm1J1CG2E0k-5N_XITn3tOzOxw4zhNwDWwDT4gkWshRaMnlBZsBsWRit7CWZMcZ5waW11-QmpQ1jAFbKGflZR-xTm9uhp7s41Fi322nziQ6B9kPscEtTxjwdnM8-dm3vaf719HOIDvtJi2OTx-iPPNL9iH0eO5oOKfvullwF3CZ_d55z8v36sl6-F6uvt4_l86pouFW5AGelUUpjML42tQyeY60dYFCBQWmYs0o5USorUQjFlWTKS3Sl44hgg5iTh9PfKcF-9ClXm2GM_WRZceDCaNAl_48Cow1IEKWcqMcT1cQhpehDtYtth_FQAauOFVdQnSsWf294baY</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Leung, Chi-Wai</creator><creator>Ng, Chi-Keung</creator><creator>Wong, Ngai-Ching</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1445-5335</orcidid></search><sort><creationdate>20160101</creationdate><title>Transition probabilities of normal states determine the Jordan structure of a quantum system</title><author>Leung, Chi-Wai ; Ng, Chi-Keung ; Wong, Ngai-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Asymmetry</topic><topic>Bonds</topic><topic>Isomorphism</topic><topic>Long term</topic><topic>Physics</topic><topic>Probability</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Chi-Wai</creatorcontrib><creatorcontrib>Ng, Chi-Keung</creatorcontrib><creatorcontrib>Wong, Ngai-Ching</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Chi-Wai</au><au>Ng, Chi-Keung</au><au>Wong, Ngai-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition probabilities of normal states determine the Jordan structure of a quantum system</atitle><jtitle>Journal of mathematical physics</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>57</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4936404</doi><orcidid>https://orcid.org/0000-0002-1445-5335</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2016-01, Vol.57 (1), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2123761692 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Asymmetry Bonds Isomorphism Long term Physics Probability Quantum physics Quantum theory Transition probabilities |
title | Transition probabilities of normal states determine the Jordan structure of a quantum system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20probabilities%20of%20normal%20states%20determine%20the%20Jordan%20structure%20of%20a%20quantum%20system&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Leung,%20Chi-Wai&rft.date=2016-01-01&rft.volume=57&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4936404&rft_dat=%3Cproquest_cross%3E3959873791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767141394&rft_id=info:pmid/&rfr_iscdi=true |