Transition probabilities of normal states determine the Jordan structure of a quantum system

Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2016-01, Vol.57 (1), p.1
Hauptverfasser: Leung, Chi-Wai, Ng, Chi-Keung, Wong, Ngai-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Journal of mathematical physics
container_volume 57
creator Leung, Chi-Wai
Ng, Chi-Keung
Wong, Ngai-Ching
description Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras.
doi_str_mv 10.1063/1.4936404
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123761692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3959873791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoWnaQ_-BoKcenGr19rGEPgn0kt4KZm1J1CG2E0k-5N_XITn3tOzOxw4zhNwDWwDT4gkWshRaMnlBZsBsWRit7CWZMcZ5waW11-QmpQ1jAFbKGflZR-xTm9uhp7s41Fi322nziQ6B9kPscEtTxjwdnM8-dm3vaf719HOIDvtJi2OTx-iPPNL9iH0eO5oOKfvullwF3CZ_d55z8v36sl6-F6uvt4_l86pouFW5AGelUUpjML42tQyeY60dYFCBQWmYs0o5USorUQjFlWTKS3Sl44hgg5iTh9PfKcF-9ClXm2GM_WRZceDCaNAl_48Cow1IEKWcqMcT1cQhpehDtYtth_FQAauOFVdQnSsWf294baY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767141394</pqid></control><display><type>article</type><title>Transition probabilities of normal states determine the Jordan structure of a quantum system</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Leung, Chi-Wai ; Ng, Chi-Keung ; Wong, Ngai-Ching</creator><creatorcontrib>Leung, Chi-Wai ; Ng, Chi-Keung ; Wong, Ngai-Ching</creatorcontrib><description>Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4936404</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Asymmetry ; Bonds ; Isomorphism ; Long term ; Physics ; Probability ; Quantum physics ; Quantum theory ; Transition probabilities</subject><ispartof>Journal of mathematical physics, 2016-01, Vol.57 (1), p.1</ispartof><rights>Copyright American Institute of Physics Jan 2016</rights><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</citedby><cites>FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</cites><orcidid>0000-0002-1445-5335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leung, Chi-Wai</creatorcontrib><creatorcontrib>Ng, Chi-Keung</creatorcontrib><creatorcontrib>Wong, Ngai-Ching</creatorcontrib><title>Transition probabilities of normal states determine the Jordan structure of a quantum system</title><title>Journal of mathematical physics</title><description>Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras.</description><subject>Algebra</subject><subject>Asymmetry</subject><subject>Bonds</subject><subject>Isomorphism</subject><subject>Long term</subject><subject>Physics</subject><subject>Probability</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>Transition probabilities</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoWnaQ_-BoKcenGr19rGEPgn0kt4KZm1J1CG2E0k-5N_XITn3tOzOxw4zhNwDWwDT4gkWshRaMnlBZsBsWRit7CWZMcZ5waW11-QmpQ1jAFbKGflZR-xTm9uhp7s41Fi322nziQ6B9kPscEtTxjwdnM8-dm3vaf719HOIDvtJi2OTx-iPPNL9iH0eO5oOKfvullwF3CZ_d55z8v36sl6-F6uvt4_l86pouFW5AGelUUpjML42tQyeY60dYFCBQWmYs0o5USorUQjFlWTKS3Sl44hgg5iTh9PfKcF-9ClXm2GM_WRZceDCaNAl_48Cow1IEKWcqMcT1cQhpehDtYtth_FQAauOFVdQnSsWf294baY</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Leung, Chi-Wai</creator><creator>Ng, Chi-Keung</creator><creator>Wong, Ngai-Ching</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1445-5335</orcidid></search><sort><creationdate>20160101</creationdate><title>Transition probabilities of normal states determine the Jordan structure of a quantum system</title><author>Leung, Chi-Wai ; Ng, Chi-Keung ; Wong, Ngai-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-1d847556af7eb7b4fe2ab6d1af5f01970d855d39584a33525405e4ad9d2aa18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Asymmetry</topic><topic>Bonds</topic><topic>Isomorphism</topic><topic>Long term</topic><topic>Physics</topic><topic>Probability</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Chi-Wai</creatorcontrib><creatorcontrib>Ng, Chi-Keung</creatorcontrib><creatorcontrib>Wong, Ngai-Ching</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Chi-Wai</au><au>Ng, Chi-Keung</au><au>Wong, Ngai-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition probabilities of normal states determine the Jordan structure of a quantum system</atitle><jtitle>Journal of mathematical physics</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>57</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>Let Φ : (M1) → (M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of “transition probability” on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an “asymmetric transition probability” P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have PΦ(μ),Φ(ν)=0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗| (M1) if and only if Φ preserves the “asymmetric transition probability.” This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or “the metric induced by the self-dual cone,” are complete Jordan ∗-invariants for the underlying von Neumann algebras.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4936404</doi><orcidid>https://orcid.org/0000-0002-1445-5335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2016-01, Vol.57 (1), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2123761692
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algebra
Asymmetry
Bonds
Isomorphism
Long term
Physics
Probability
Quantum physics
Quantum theory
Transition probabilities
title Transition probabilities of normal states determine the Jordan structure of a quantum system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20probabilities%20of%20normal%20states%20determine%20the%20Jordan%20structure%20of%20a%20quantum%20system&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Leung,%20Chi-Wai&rft.date=2016-01-01&rft.volume=57&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4936404&rft_dat=%3Cproquest_cross%3E3959873791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767141394&rft_id=info:pmid/&rfr_iscdi=true