Large eddy simulation of an H-Darrieus rotor

This study primarily aims to examine the flow field around an H-Darrieus wind turbine using Large Eddy Simulation (LES). The corresponding experimental data for the validation is provided by TU Delft. As in the experiments, the turbine operates at a tip speed ratio (TSR) of 2 and a chord-based Reyno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-10, Vol.160, p.388-398
Hauptverfasser: Patil, Rohit, Daróczy, László, Janiga, Gábor, Thévenin, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue
container_start_page 388
container_title Energy (Oxford)
container_volume 160
creator Patil, Rohit
Daróczy, László
Janiga, Gábor
Thévenin, Dominique
description This study primarily aims to examine the flow field around an H-Darrieus wind turbine using Large Eddy Simulation (LES). The corresponding experimental data for the validation is provided by TU Delft. As in the experiments, the turbine operates at a tip speed ratio (TSR) of 2 and a chord-based Reynolds number (Re) of 8·104. A dedicated block-structured mesh has been generated to perform 3D LES simulation by using the WALE subgrid model. The low TSR results in a high angle of attack and causes the turbine to experience dynamic stall, leading to particularly challenging aerodynamic conditions. Normal and tangential forces obtained by LES are compared with experimental results, leading overall to a good agreement. The quality of the LES computation is further confirmed by analyzing turbulent spectra at several locations in the simulations. Finally, vortex shedding from a single turbine blade is studied, revealing that six distinct leading-edge and trailing-edge vortex pairs form and detach during one rotation. •3D turbulent flow simulations are performed around an H-Darrieus wind turbine.•Large Eddy Simulations (LES) are used with the WALE subgrid-scale model.•Normal and tangential forces show good agreement compared with experimental results.•Turbulent spectra are analyzed at several locations around the blade.•Six distinct leading-edge and trailing-edge vortex pairs are observed during one rotation.
doi_str_mv 10.1016/j.energy.2018.06.203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123709643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218312684</els_id><sourcerecordid>2123709643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b40335e56a8f1b75062f32477c747b6d9be0473393516dd13e2cfdd6005caab43</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBgyRWEk4vsROFiRULkWqxAKz5dgnlaM2LnaC1LcnVZiZvuW_nPMTckuhoEDlQ1dgj3F7LBjQqgA5kZ-RBa0Uz6WqynOyAC4hL4Vgl-QqpQ4AyqquF-R-Y-IWM3TumCW_H3dm8KHPQpuZPlvnzyZGj2PKYhhCvCYXrdklvPnjkny9vnyu1vnm4-199bTJLVd8yBsBnJdYSlO1tFElSNZyJpSySqhGurpBEIrzmpdUOkc5Mts6J6ebrDGN4EtyN-ceYvgeMQ26C2Psp0rNKOMKain4pBKzysaQUsRWH6Lfm3jUFPRpF93peRd92kWDnHiyPc42nD748Rh1sh57i85HtIN2wf8f8As_7Gty</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123709643</pqid></control><display><type>article</type><title>Large eddy simulation of an H-Darrieus rotor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Patil, Rohit ; Daróczy, László ; Janiga, Gábor ; Thévenin, Dominique</creator><creatorcontrib>Patil, Rohit ; Daróczy, László ; Janiga, Gábor ; Thévenin, Dominique</creatorcontrib><description>This study primarily aims to examine the flow field around an H-Darrieus wind turbine using Large Eddy Simulation (LES). The corresponding experimental data for the validation is provided by TU Delft. As in the experiments, the turbine operates at a tip speed ratio (TSR) of 2 and a chord-based Reynolds number (Re) of 8·104. A dedicated block-structured mesh has been generated to perform 3D LES simulation by using the WALE subgrid model. The low TSR results in a high angle of attack and causes the turbine to experience dynamic stall, leading to particularly challenging aerodynamic conditions. Normal and tangential forces obtained by LES are compared with experimental results, leading overall to a good agreement. The quality of the LES computation is further confirmed by analyzing turbulent spectra at several locations in the simulations. Finally, vortex shedding from a single turbine blade is studied, revealing that six distinct leading-edge and trailing-edge vortex pairs form and detach during one rotation. •3D turbulent flow simulations are performed around an H-Darrieus wind turbine.•Large Eddy Simulations (LES) are used with the WALE subgrid-scale model.•Normal and tangential forces show good agreement compared with experimental results.•Turbulent spectra are analyzed at several locations around the blade.•Six distinct leading-edge and trailing-edge vortex pairs are observed during one rotation.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.06.203</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Angle of attack ; CFD ; Computational fluid dynamics ; Computer simulation ; Darrieus ; Energy consumption ; Finite element method ; Fluid flow ; H-rotor ; High angle of attack ; Large eddy simulation ; LES ; Mesh generation ; Reynolds number ; Tip speed ; Turbine blades ; Turbines ; Vortex shedding ; Vortices ; Wind energy ; Wind power ; Wind turbines</subject><ispartof>Energy (Oxford), 2018-10, Vol.160, p.388-398</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b40335e56a8f1b75062f32477c747b6d9be0473393516dd13e2cfdd6005caab43</citedby><cites>FETCH-LOGICAL-c373t-b40335e56a8f1b75062f32477c747b6d9be0473393516dd13e2cfdd6005caab43</cites><orcidid>0000-0002-4560-9640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.06.203$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Patil, Rohit</creatorcontrib><creatorcontrib>Daróczy, László</creatorcontrib><creatorcontrib>Janiga, Gábor</creatorcontrib><creatorcontrib>Thévenin, Dominique</creatorcontrib><title>Large eddy simulation of an H-Darrieus rotor</title><title>Energy (Oxford)</title><description>This study primarily aims to examine the flow field around an H-Darrieus wind turbine using Large Eddy Simulation (LES). The corresponding experimental data for the validation is provided by TU Delft. As in the experiments, the turbine operates at a tip speed ratio (TSR) of 2 and a chord-based Reynolds number (Re) of 8·104. A dedicated block-structured mesh has been generated to perform 3D LES simulation by using the WALE subgrid model. The low TSR results in a high angle of attack and causes the turbine to experience dynamic stall, leading to particularly challenging aerodynamic conditions. Normal and tangential forces obtained by LES are compared with experimental results, leading overall to a good agreement. The quality of the LES computation is further confirmed by analyzing turbulent spectra at several locations in the simulations. Finally, vortex shedding from a single turbine blade is studied, revealing that six distinct leading-edge and trailing-edge vortex pairs form and detach during one rotation. •3D turbulent flow simulations are performed around an H-Darrieus wind turbine.•Large Eddy Simulations (LES) are used with the WALE subgrid-scale model.•Normal and tangential forces show good agreement compared with experimental results.•Turbulent spectra are analyzed at several locations around the blade.•Six distinct leading-edge and trailing-edge vortex pairs are observed during one rotation.</description><subject>Aerodynamics</subject><subject>Angle of attack</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Darrieus</subject><subject>Energy consumption</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>H-rotor</subject><subject>High angle of attack</subject><subject>Large eddy simulation</subject><subject>LES</subject><subject>Mesh generation</subject><subject>Reynolds number</subject><subject>Tip speed</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Vortex shedding</subject><subject>Vortices</subject><subject>Wind energy</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBgyRWEk4vsROFiRULkWqxAKz5dgnlaM2LnaC1LcnVZiZvuW_nPMTckuhoEDlQ1dgj3F7LBjQqgA5kZ-RBa0Uz6WqynOyAC4hL4Vgl-QqpQ4AyqquF-R-Y-IWM3TumCW_H3dm8KHPQpuZPlvnzyZGj2PKYhhCvCYXrdklvPnjkny9vnyu1vnm4-199bTJLVd8yBsBnJdYSlO1tFElSNZyJpSySqhGurpBEIrzmpdUOkc5Mts6J6ebrDGN4EtyN-ceYvgeMQ26C2Psp0rNKOMKain4pBKzysaQUsRWH6Lfm3jUFPRpF93peRd92kWDnHiyPc42nD748Rh1sh57i85HtIN2wf8f8As_7Gty</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Patil, Rohit</creator><creator>Daróczy, László</creator><creator>Janiga, Gábor</creator><creator>Thévenin, Dominique</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4560-9640</orcidid></search><sort><creationdate>20181001</creationdate><title>Large eddy simulation of an H-Darrieus rotor</title><author>Patil, Rohit ; Daróczy, László ; Janiga, Gábor ; Thévenin, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b40335e56a8f1b75062f32477c747b6d9be0473393516dd13e2cfdd6005caab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Angle of attack</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Darrieus</topic><topic>Energy consumption</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>H-rotor</topic><topic>High angle of attack</topic><topic>Large eddy simulation</topic><topic>LES</topic><topic>Mesh generation</topic><topic>Reynolds number</topic><topic>Tip speed</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Vortex shedding</topic><topic>Vortices</topic><topic>Wind energy</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Rohit</creatorcontrib><creatorcontrib>Daróczy, László</creatorcontrib><creatorcontrib>Janiga, Gábor</creatorcontrib><creatorcontrib>Thévenin, Dominique</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Rohit</au><au>Daróczy, László</au><au>Janiga, Gábor</au><au>Thévenin, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large eddy simulation of an H-Darrieus rotor</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>160</volume><spage>388</spage><epage>398</epage><pages>388-398</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This study primarily aims to examine the flow field around an H-Darrieus wind turbine using Large Eddy Simulation (LES). The corresponding experimental data for the validation is provided by TU Delft. As in the experiments, the turbine operates at a tip speed ratio (TSR) of 2 and a chord-based Reynolds number (Re) of 8·104. A dedicated block-structured mesh has been generated to perform 3D LES simulation by using the WALE subgrid model. The low TSR results in a high angle of attack and causes the turbine to experience dynamic stall, leading to particularly challenging aerodynamic conditions. Normal and tangential forces obtained by LES are compared with experimental results, leading overall to a good agreement. The quality of the LES computation is further confirmed by analyzing turbulent spectra at several locations in the simulations. Finally, vortex shedding from a single turbine blade is studied, revealing that six distinct leading-edge and trailing-edge vortex pairs form and detach during one rotation. •3D turbulent flow simulations are performed around an H-Darrieus wind turbine.•Large Eddy Simulations (LES) are used with the WALE subgrid-scale model.•Normal and tangential forces show good agreement compared with experimental results.•Turbulent spectra are analyzed at several locations around the blade.•Six distinct leading-edge and trailing-edge vortex pairs are observed during one rotation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.06.203</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4560-9640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2018-10, Vol.160, p.388-398
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2123709643
source Elsevier ScienceDirect Journals Complete
subjects Aerodynamics
Angle of attack
CFD
Computational fluid dynamics
Computer simulation
Darrieus
Energy consumption
Finite element method
Fluid flow
H-rotor
High angle of attack
Large eddy simulation
LES
Mesh generation
Reynolds number
Tip speed
Turbine blades
Turbines
Vortex shedding
Vortices
Wind energy
Wind power
Wind turbines
title Large eddy simulation of an H-Darrieus rotor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20eddy%20simulation%20of%20an%20H-Darrieus%20rotor&rft.jtitle=Energy%20(Oxford)&rft.au=Patil,%20Rohit&rft.date=2018-10-01&rft.volume=160&rft.spage=388&rft.epage=398&rft.pages=388-398&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.06.203&rft_dat=%3Cproquest_cross%3E2123709643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123709643&rft_id=info:pmid/&rft_els_id=S0360544218312684&rfr_iscdi=true