Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models

We study the transport properties of an arbitrary two-terminal Hermitian system within a tight-binding approximation and derive an expression for the transparency in a form that enables one to determine the exact energies of the perfect (unity) transmittance, zero transmittance (Fano resonance), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-11, Vol.96 (20), Article 205441
Hauptverfasser: Gorbatsevich, A. A., Shubin, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Physical review. B
container_volume 96
creator Gorbatsevich, A. A.
Shubin, N. M.
description We study the transport properties of an arbitrary two-terminal Hermitian system within a tight-binding approximation and derive an expression for the transparency in a form that enables one to determine the exact energies of the perfect (unity) transmittance, zero transmittance (Fano resonance), and bound state in the continuum (BIC). These energies correspond to the real roots of two energy-dependent functions that are obtained from two non-Hermitian Hamiltonians: the Feshbach effective Hamiltonian and the auxiliary Hamiltonian, which can be easily deduced from the effective one. BICs and scattering states are deeply interconnected. We show that the transformation of a scattering state into a BIC can be formally described as a “phase transition” with a divergent generalized response function. Design rules for quantum conductors and waveguides are presented. These rules describe the structures exhibiting coalescence of both resonances and antiresonances resulting in the formation of almost rectangular transparency and reflection windows. The results can find applications in the construction of molecular conductors, broad-band filters, quantum heat engines, and waveguides with controllable BIC formation.
doi_str_mv 10.1103/PhysRevB.96.205441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123183680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123183680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-b8a1486e1ec6cf50bd573ea5e9df2ab60d01eb22280def1b64b2d4a674ba9be93</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOHT_gE8FnzsvaZs2jzrUCQNF3HNMmuuWsSYzSYX993ZMfbk7vvvuO_gRckNhRikUd2-bQ3zH74eZ4DMGVVnSMzJhJRe5EFyc_88VXJJpjFsAoBxEDWJCPlfOdhZNljbowyHzXRYweqdcizFTzmTaD2ONSaVRsO5ozFrvknXD0B-FBYbeJqvGlV1vUq6tM9ats94b3MVrctGpXcTpb78iq6fHj_kiX74-v8zvl3nL6mo8ahQtG44UW952FWhT1QWqCoXpmNIcDFDUjLEGDHZU81IzUypel1oJjaK4Iren3H3wXwPGJLd-CG58KRllBW0K3sDoYidXG3yMATu5D7ZX4SApyCNM-QdTCi5PMIsfmw5rPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123183680</pqid></control><display><type>article</type><title>Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models</title><source>American Physical Society Journals</source><creator>Gorbatsevich, A. A. ; Shubin, N. M.</creator><creatorcontrib>Gorbatsevich, A. A. ; Shubin, N. M.</creatorcontrib><description>We study the transport properties of an arbitrary two-terminal Hermitian system within a tight-binding approximation and derive an expression for the transparency in a form that enables one to determine the exact energies of the perfect (unity) transmittance, zero transmittance (Fano resonance), and bound state in the continuum (BIC). These energies correspond to the real roots of two energy-dependent functions that are obtained from two non-Hermitian Hamiltonians: the Feshbach effective Hamiltonian and the auxiliary Hamiltonian, which can be easily deduced from the effective one. BICs and scattering states are deeply interconnected. We show that the transformation of a scattering state into a BIC can be formally described as a “phase transition” with a divergent generalized response function. Design rules for quantum conductors and waveguides are presented. These rules describe the structures exhibiting coalescence of both resonances and antiresonances resulting in the formation of almost rectangular transparency and reflection windows. The results can find applications in the construction of molecular conductors, broad-band filters, quantum heat engines, and waveguides with controllable BIC formation.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.205441</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Binding ; Coalescing ; Conductors ; Hamiltonian functions ; Heat engines ; Phase transitions ; Response functions ; Scattering ; Transmittance ; Wave filters ; Waveguides</subject><ispartof>Physical review. B, 2017-11, Vol.96 (20), Article 205441</ispartof><rights>Copyright American Physical Society Nov 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-b8a1486e1ec6cf50bd573ea5e9df2ab60d01eb22280def1b64b2d4a674ba9be93</citedby><cites>FETCH-LOGICAL-c275t-b8a1486e1ec6cf50bd573ea5e9df2ab60d01eb22280def1b64b2d4a674ba9be93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Gorbatsevich, A. A.</creatorcontrib><creatorcontrib>Shubin, N. M.</creatorcontrib><title>Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models</title><title>Physical review. B</title><description>We study the transport properties of an arbitrary two-terminal Hermitian system within a tight-binding approximation and derive an expression for the transparency in a form that enables one to determine the exact energies of the perfect (unity) transmittance, zero transmittance (Fano resonance), and bound state in the continuum (BIC). These energies correspond to the real roots of two energy-dependent functions that are obtained from two non-Hermitian Hamiltonians: the Feshbach effective Hamiltonian and the auxiliary Hamiltonian, which can be easily deduced from the effective one. BICs and scattering states are deeply interconnected. We show that the transformation of a scattering state into a BIC can be formally described as a “phase transition” with a divergent generalized response function. Design rules for quantum conductors and waveguides are presented. These rules describe the structures exhibiting coalescence of both resonances and antiresonances resulting in the formation of almost rectangular transparency and reflection windows. The results can find applications in the construction of molecular conductors, broad-band filters, quantum heat engines, and waveguides with controllable BIC formation.</description><subject>Binding</subject><subject>Coalescing</subject><subject>Conductors</subject><subject>Hamiltonian functions</subject><subject>Heat engines</subject><subject>Phase transitions</subject><subject>Response functions</subject><subject>Scattering</subject><subject>Transmittance</subject><subject>Wave filters</subject><subject>Waveguides</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOHT_gE8FnzsvaZs2jzrUCQNF3HNMmuuWsSYzSYX993ZMfbk7vvvuO_gRckNhRikUd2-bQ3zH74eZ4DMGVVnSMzJhJRe5EFyc_88VXJJpjFsAoBxEDWJCPlfOdhZNljbowyHzXRYweqdcizFTzmTaD2ONSaVRsO5ozFrvknXD0B-FBYbeJqvGlV1vUq6tM9ats94b3MVrctGpXcTpb78iq6fHj_kiX74-v8zvl3nL6mo8ahQtG44UW952FWhT1QWqCoXpmNIcDFDUjLEGDHZU81IzUypel1oJjaK4Iren3H3wXwPGJLd-CG58KRllBW0K3sDoYidXG3yMATu5D7ZX4SApyCNM-QdTCi5PMIsfmw5rPQ</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Gorbatsevich, A. A.</creator><creator>Shubin, N. M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20171128</creationdate><title>Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models</title><author>Gorbatsevich, A. A. ; Shubin, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-b8a1486e1ec6cf50bd573ea5e9df2ab60d01eb22280def1b64b2d4a674ba9be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binding</topic><topic>Coalescing</topic><topic>Conductors</topic><topic>Hamiltonian functions</topic><topic>Heat engines</topic><topic>Phase transitions</topic><topic>Response functions</topic><topic>Scattering</topic><topic>Transmittance</topic><topic>Wave filters</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorbatsevich, A. A.</creatorcontrib><creatorcontrib>Shubin, N. M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorbatsevich, A. A.</au><au>Shubin, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models</atitle><jtitle>Physical review. B</jtitle><date>2017-11-28</date><risdate>2017</risdate><volume>96</volume><issue>20</issue><artnum>205441</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the transport properties of an arbitrary two-terminal Hermitian system within a tight-binding approximation and derive an expression for the transparency in a form that enables one to determine the exact energies of the perfect (unity) transmittance, zero transmittance (Fano resonance), and bound state in the continuum (BIC). These energies correspond to the real roots of two energy-dependent functions that are obtained from two non-Hermitian Hamiltonians: the Feshbach effective Hamiltonian and the auxiliary Hamiltonian, which can be easily deduced from the effective one. BICs and scattering states are deeply interconnected. We show that the transformation of a scattering state into a BIC can be formally described as a “phase transition” with a divergent generalized response function. Design rules for quantum conductors and waveguides are presented. These rules describe the structures exhibiting coalescence of both resonances and antiresonances resulting in the formation of almost rectangular transparency and reflection windows. The results can find applications in the construction of molecular conductors, broad-band filters, quantum heat engines, and waveguides with controllable BIC formation.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.205441</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-11, Vol.96 (20), Article 205441
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2123183680
source American Physical Society Journals
subjects Binding
Coalescing
Conductors
Hamiltonian functions
Heat engines
Phase transitions
Response functions
Scattering
Transmittance
Wave filters
Waveguides
title Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20theory%20of%20resonances%20and%20bound%20states%20in%20the%20continuum%20in%20Hermitian%20tight-binding%20models&rft.jtitle=Physical%20review.%20B&rft.au=Gorbatsevich,%20A.%20A.&rft.date=2017-11-28&rft.volume=96&rft.issue=20&rft.artnum=205441&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.205441&rft_dat=%3Cproquest_cross%3E2123183680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123183680&rft_id=info:pmid/&rfr_iscdi=true