Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN

Defect-related photoluminescence (PL) is analyzed in detail for n-type, p-type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n-type and p-type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-05, Vol.97 (20)
Hauptverfasser: Reshchikov, M A, Ghimire, P, Demchenko, D O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Physical review. B
container_volume 97
creator Reshchikov, M A
Ghimire, P
Demchenko, D O
description Defect-related photoluminescence (PL) is analyzed in detail for n-type, p-type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n-type and p-type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow MgGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (BLMg) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019cm−3. The BLMg band is attributed to electron transitions from an unknown deep donor to the shallow MgGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.
doi_str_mv 10.1103/PhysRevB.97.205204
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2123180722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123180722</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-96035ede5205cd70d98d32f3ad46bbadd6b8bd637ae62700a9c6ce023665925b3</originalsourceid><addsrcrecordid>eNo9jtFLwzAYxIMoOOb-AZ8CPrd-SZq0edShc7DqEH0eafK162ib2rSC_70Vxac7jh93R8g1g5gxELf741d4xc_7WKcxB8khOSMLnigdaa30-b-XcElWIZwAgCnQKegFyXNTdRjqqaXGWuxHP9C6o5Vpmp-sq8ehdhjTbUz3Rz_6ZmrrmbfYWaTl4FuaV5HzPTq6Mc9X5KI0TcDVny7J--PD2_op2r1stuu7XdQzJsZIKxASHc5XpXUpOJ05wUthXKKKwjiniqxwSqQGFU8BjLbKInChlNRcFmJJbn57-8F_TBjGw8lPQzdPHjjjgmWQci6-AdODUcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123180722</pqid></control><display><type>article</type><title>Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN</title><source>American Physical Society Journals</source><creator>Reshchikov, M A ; Ghimire, P ; Demchenko, D O</creator><creatorcontrib>Reshchikov, M A ; Ghimire, P ; Demchenko, D O</creatorcontrib><description>Defect-related photoluminescence (PL) is analyzed in detail for n-type, p-type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n-type and p-type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow MgGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (BLMg) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019cm−3. The BLMg band is attributed to electron transitions from an unknown deep donor to the shallow MgGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.205204</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Electron transitions ; Epitaxial growth ; Gallium nitrides ; Ionization ; Luminescence ; Magnesium ; Metalorganic chemical vapor deposition ; Molecular beam epitaxy ; Organic chemistry ; Photoluminescence ; Vapor phase epitaxy ; Vapor phases ; Variations</subject><ispartof>Physical review. B, 2018-05, Vol.97 (20)</ispartof><rights>Copyright American Physical Society May 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Reshchikov, M A</creatorcontrib><creatorcontrib>Ghimire, P</creatorcontrib><creatorcontrib>Demchenko, D O</creatorcontrib><title>Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN</title><title>Physical review. B</title><description>Defect-related photoluminescence (PL) is analyzed in detail for n-type, p-type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n-type and p-type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow MgGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (BLMg) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019cm−3. The BLMg band is attributed to electron transitions from an unknown deep donor to the shallow MgGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.</description><subject>Electron transitions</subject><subject>Epitaxial growth</subject><subject>Gallium nitrides</subject><subject>Ionization</subject><subject>Luminescence</subject><subject>Magnesium</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Molecular beam epitaxy</subject><subject>Organic chemistry</subject><subject>Photoluminescence</subject><subject>Vapor phase epitaxy</subject><subject>Vapor phases</subject><subject>Variations</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jtFLwzAYxIMoOOb-AZ8CPrd-SZq0edShc7DqEH0eafK162ib2rSC_70Vxac7jh93R8g1g5gxELf741d4xc_7WKcxB8khOSMLnigdaa30-b-XcElWIZwAgCnQKegFyXNTdRjqqaXGWuxHP9C6o5Vpmp-sq8ehdhjTbUz3Rz_6ZmrrmbfYWaTl4FuaV5HzPTq6Mc9X5KI0TcDVny7J--PD2_op2r1stuu7XdQzJsZIKxASHc5XpXUpOJ05wUthXKKKwjiniqxwSqQGFU8BjLbKInChlNRcFmJJbn57-8F_TBjGw8lPQzdPHjjjgmWQci6-AdODUcY</recordid><startdate>20180517</startdate><enddate>20180517</enddate><creator>Reshchikov, M A</creator><creator>Ghimire, P</creator><creator>Demchenko, D O</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180517</creationdate><title>Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN</title><author>Reshchikov, M A ; Ghimire, P ; Demchenko, D O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-96035ede5205cd70d98d32f3ad46bbadd6b8bd637ae62700a9c6ce023665925b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electron transitions</topic><topic>Epitaxial growth</topic><topic>Gallium nitrides</topic><topic>Ionization</topic><topic>Luminescence</topic><topic>Magnesium</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Molecular beam epitaxy</topic><topic>Organic chemistry</topic><topic>Photoluminescence</topic><topic>Vapor phase epitaxy</topic><topic>Vapor phases</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reshchikov, M A</creatorcontrib><creatorcontrib>Ghimire, P</creatorcontrib><creatorcontrib>Demchenko, D O</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reshchikov, M A</au><au>Ghimire, P</au><au>Demchenko, D O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN</atitle><jtitle>Physical review. B</jtitle><date>2018-05-17</date><risdate>2018</risdate><volume>97</volume><issue>20</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Defect-related photoluminescence (PL) is analyzed in detail for n-type, p-type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n-type and p-type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow MgGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (BLMg) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019cm−3. The BLMg band is attributed to electron transitions from an unknown deep donor to the shallow MgGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.205204</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-05, Vol.97 (20)
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2123180722
source American Physical Society Journals
subjects Electron transitions
Epitaxial growth
Gallium nitrides
Ionization
Luminescence
Magnesium
Metalorganic chemical vapor deposition
Molecular beam epitaxy
Organic chemistry
Photoluminescence
Vapor phase epitaxy
Vapor phases
Variations
title Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20acceptor%20in%20gallium%20nitride.%20I.%20Photoluminescence%20from%20Mg-doped%20GaN&rft.jtitle=Physical%20review.%20B&rft.au=Reshchikov,%20M%20A&rft.date=2018-05-17&rft.volume=97&rft.issue=20&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.205204&rft_dat=%3Cproquest%3E2123180722%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123180722&rft_id=info:pmid/&rfr_iscdi=true