Magnetomechanical coupling in thermal amorphous solids
Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-05, Vol.97 (17), Article 174105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Physical review. B |
container_volume | 97 |
creator | Hentschel, H. George E. Ilyin, Valery Mondal, Chandana Procaccia, Itamar |
description | Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect. |
doi_str_mv | 10.1103/PhysRevB.97.174105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123180062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123180062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouKz7BTwVPHedSZqkOeriP1hRRM8hTdNtl7apSSvst7ey6ukN7z1mmB8hlwhrRGDXr_Uhvrmv27WSa5QZAj8hC5oJlSol1On_zOGcrGLcAwAKUBLUgohns-vd6Dtna9M31rSJ9dPQNv0uafpkrF3oZs90Pgy1n2ISfduU8YKcVaaNbvWrS_Jxf_e-eUy3Lw9Pm5ttaqnkY4qCZVQixYyjYlDlCgqrSiel4lRlRW5sxbGgWCJDqJgs5nz-SXBpK5NLtiRXx71D8J-Ti6Pe-yn080lNkTLMAQSdW_TYssHHGFylh9B0Jhw0gv5BpP8QaSX1ERH7BvN0WdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123180062</pqid></control><display><type>article</type><title>Magnetomechanical coupling in thermal amorphous solids</title><source>American Physical Society Journals</source><creator>Hentschel, H. George E. ; Ilyin, Valery ; Mondal, Chandana ; Procaccia, Itamar</creator><creatorcontrib>Hentschel, H. George E. ; Ilyin, Valery ; Mondal, Chandana ; Procaccia, Itamar</creatorcontrib><description>Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.174105</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Functionals ; Magnetostriction</subject><ispartof>Physical review. B, 2018-05, Vol.97 (17), Article 174105</ispartof><rights>Copyright American Physical Society May 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</citedby><cites>FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids></links><search><creatorcontrib>Hentschel, H. George E.</creatorcontrib><creatorcontrib>Ilyin, Valery</creatorcontrib><creatorcontrib>Mondal, Chandana</creatorcontrib><creatorcontrib>Procaccia, Itamar</creatorcontrib><title>Magnetomechanical coupling in thermal amorphous solids</title><title>Physical review. B</title><description>Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect.</description><subject>Anisotropy</subject><subject>Functionals</subject><subject>Magnetostriction</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAQxYMouKz7BTwVPHedSZqkOeriP1hRRM8hTdNtl7apSSvst7ey6ukN7z1mmB8hlwhrRGDXr_Uhvrmv27WSa5QZAj8hC5oJlSol1On_zOGcrGLcAwAKUBLUgohns-vd6Dtna9M31rSJ9dPQNv0uafpkrF3oZs90Pgy1n2ISfduU8YKcVaaNbvWrS_Jxf_e-eUy3Lw9Pm5ttaqnkY4qCZVQixYyjYlDlCgqrSiel4lRlRW5sxbGgWCJDqJgs5nz-SXBpK5NLtiRXx71D8J-Ti6Pe-yn080lNkTLMAQSdW_TYssHHGFylh9B0Jhw0gv5BpP8QaSX1ERH7BvN0WdI</recordid><startdate>20180524</startdate><enddate>20180524</enddate><creator>Hentschel, H. George E.</creator><creator>Ilyin, Valery</creator><creator>Mondal, Chandana</creator><creator>Procaccia, Itamar</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180524</creationdate><title>Magnetomechanical coupling in thermal amorphous solids</title><author>Hentschel, H. George E. ; Ilyin, Valery ; Mondal, Chandana ; Procaccia, Itamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Functionals</topic><topic>Magnetostriction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hentschel, H. George E.</creatorcontrib><creatorcontrib>Ilyin, Valery</creatorcontrib><creatorcontrib>Mondal, Chandana</creatorcontrib><creatorcontrib>Procaccia, Itamar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hentschel, H. George E.</au><au>Ilyin, Valery</au><au>Mondal, Chandana</au><au>Procaccia, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetomechanical coupling in thermal amorphous solids</atitle><jtitle>Physical review. B</jtitle><date>2018-05-24</date><risdate>2018</risdate><volume>97</volume><issue>17</issue><artnum>174105</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.174105</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-05, Vol.97 (17), Article 174105 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2123180062 |
source | American Physical Society Journals |
subjects | Anisotropy Functionals Magnetostriction |
title | Magnetomechanical coupling in thermal amorphous solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetomechanical%20coupling%20in%20thermal%20amorphous%20solids&rft.jtitle=Physical%20review.%20B&rft.au=Hentschel,%20H.%20George%20E.&rft.date=2018-05-24&rft.volume=97&rft.issue=17&rft.artnum=174105&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.174105&rft_dat=%3Cproquest_cross%3E2123180062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123180062&rft_id=info:pmid/&rfr_iscdi=true |