Magnetomechanical coupling in thermal amorphous solids

Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-05, Vol.97 (17), Article 174105
Hauptverfasser: Hentschel, H. George E., Ilyin, Valery, Mondal, Chandana, Procaccia, Itamar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Physical review. B
container_volume 97
creator Hentschel, H. George E.
Ilyin, Valery
Mondal, Chandana
Procaccia, Itamar
description Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect.
doi_str_mv 10.1103/PhysRevB.97.174105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123180062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123180062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouKz7BTwVPHedSZqkOeriP1hRRM8hTdNtl7apSSvst7ey6ukN7z1mmB8hlwhrRGDXr_Uhvrmv27WSa5QZAj8hC5oJlSol1On_zOGcrGLcAwAKUBLUgohns-vd6Dtna9M31rSJ9dPQNv0uafpkrF3oZs90Pgy1n2ISfduU8YKcVaaNbvWrS_Jxf_e-eUy3Lw9Pm5ttaqnkY4qCZVQixYyjYlDlCgqrSiel4lRlRW5sxbGgWCJDqJgs5nz-SXBpK5NLtiRXx71D8J-Ti6Pe-yn080lNkTLMAQSdW_TYssHHGFylh9B0Jhw0gv5BpP8QaSX1ERH7BvN0WdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123180062</pqid></control><display><type>article</type><title>Magnetomechanical coupling in thermal amorphous solids</title><source>American Physical Society Journals</source><creator>Hentschel, H. George E. ; Ilyin, Valery ; Mondal, Chandana ; Procaccia, Itamar</creator><creatorcontrib>Hentschel, H. George E. ; Ilyin, Valery ; Mondal, Chandana ; Procaccia, Itamar</creatorcontrib><description>Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.174105</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Functionals ; Magnetostriction</subject><ispartof>Physical review. B, 2018-05, Vol.97 (17), Article 174105</ispartof><rights>Copyright American Physical Society May 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</citedby><cites>FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids></links><search><creatorcontrib>Hentschel, H. George E.</creatorcontrib><creatorcontrib>Ilyin, Valery</creatorcontrib><creatorcontrib>Mondal, Chandana</creatorcontrib><creatorcontrib>Procaccia, Itamar</creatorcontrib><title>Magnetomechanical coupling in thermal amorphous solids</title><title>Physical review. B</title><description>Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect.</description><subject>Anisotropy</subject><subject>Functionals</subject><subject>Magnetostriction</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAQxYMouKz7BTwVPHedSZqkOeriP1hRRM8hTdNtl7apSSvst7ey6ukN7z1mmB8hlwhrRGDXr_Uhvrmv27WSa5QZAj8hC5oJlSol1On_zOGcrGLcAwAKUBLUgohns-vd6Dtna9M31rSJ9dPQNv0uafpkrF3oZs90Pgy1n2ISfduU8YKcVaaNbvWrS_Jxf_e-eUy3Lw9Pm5ttaqnkY4qCZVQixYyjYlDlCgqrSiel4lRlRW5sxbGgWCJDqJgs5nz-SXBpK5NLtiRXx71D8J-Ti6Pe-yn080lNkTLMAQSdW_TYssHHGFylh9B0Jhw0gv5BpP8QaSX1ERH7BvN0WdI</recordid><startdate>20180524</startdate><enddate>20180524</enddate><creator>Hentschel, H. George E.</creator><creator>Ilyin, Valery</creator><creator>Mondal, Chandana</creator><creator>Procaccia, Itamar</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180524</creationdate><title>Magnetomechanical coupling in thermal amorphous solids</title><author>Hentschel, H. George E. ; Ilyin, Valery ; Mondal, Chandana ; Procaccia, Itamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-163427121451930f890bc9de7795294b8acf51b21d1310f37b0bc110657cfa873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Functionals</topic><topic>Magnetostriction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hentschel, H. George E.</creatorcontrib><creatorcontrib>Ilyin, Valery</creatorcontrib><creatorcontrib>Mondal, Chandana</creatorcontrib><creatorcontrib>Procaccia, Itamar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hentschel, H. George E.</au><au>Ilyin, Valery</au><au>Mondal, Chandana</au><au>Procaccia, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetomechanical coupling in thermal amorphous solids</atitle><jtitle>Physical review. B</jtitle><date>2018-05-24</date><risdate>2018</risdate><volume>97</volume><issue>17</issue><artnum>174105</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the magnetostriction effect.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.174105</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-05, Vol.97 (17), Article 174105
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2123180062
source American Physical Society Journals
subjects Anisotropy
Functionals
Magnetostriction
title Magnetomechanical coupling in thermal amorphous solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetomechanical%20coupling%20in%20thermal%20amorphous%20solids&rft.jtitle=Physical%20review.%20B&rft.au=Hentschel,%20H.%20George%20E.&rft.date=2018-05-24&rft.volume=97&rft.issue=17&rft.artnum=174105&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.174105&rft_dat=%3Cproquest_cross%3E2123180062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123180062&rft_id=info:pmid/&rfr_iscdi=true