Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides

Activating multiple symmetry modes and promoting a strong coupling between different modes by strain are indispensable to stabilize a polar ferroelectric (FE) phase from a nonpolar perovskite. Herein, through first-principles calculations, we propose an undiscovered and general avenue to engineering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-10, Vol.96 (14), Article 144110
Hauptverfasser: Zhang, Yajun, Sahoo, M. P. K., Shimada, Takahiro, Kitamura, Takayuki, Wang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Physical review. B
container_volume 96
creator Zhang, Yajun
Sahoo, M. P. K.
Shimada, Takahiro
Kitamura, Takayuki
Wang, Jie
description Activating multiple symmetry modes and promoting a strong coupling between different modes by strain are indispensable to stabilize a polar ferroelectric (FE) phase from a nonpolar perovskite. Herein, through first-principles calculations, we propose an undiscovered and general avenue to engineering ferroelectricity in photovoltaic perovskites with a Ruddlesden-Popper (RP) structure. It is demonstrated that an experimentally accessible compressive strain can induce an in-plane polarization in RP perovskite halides thin films, resulting in an unusual paraelectric to FE phase transition. The detailed analysis on structure and energy reveals that the unusual FE phase transition in the perovskite halides stems from the strong coupling between strain and antiferrodistortive (AFD) mode. Further calculations show that the strain-AFD coupling-induced ferroelectricity is not only exhibited by perovskite halides but also observed in perovskite sulfides such as Ba3Zr2S7. Moreover, it is found that the strained FE thin film possesses a suitable band gap of 1.6 eV for photovoltaic application. These findings not only unfold a general way to engineering nonpolar-to-polar transition, but also open an avenue to design optimal FE semiconductors for solar cell applications.
doi_str_mv 10.1103/PhysRevB.96.144110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123176478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123176478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-1310c69f60e8d47a3b0a9fe2e1954016a6285b1978154ac0080431b19bfa87623</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOHT_gE8FnztvPpo0jzr8goFj6nPImluW2bU1aQf7782Y-nA5l8OPew-HkBsKM0qB3y03h7jC_cNMyxkVInlnZMKE1LnWUp__7wVckmmMWwCgErQCPSHL9yFY3-a-dWOFLvO7PnQ9hqzGEDpssBqCr_xwyHybrUbnGowO23zZ9UcqTbePX37AbGMb7zBek4vaNhGnv3pFPp8eP-Yv-eLt-XV-v8grpoohp5xCJXUtAUsnlOVrsLpGhlQXIsWzkpXFmmpV0kLYCqAEwWky1rUtlWT8itye7qa83yPGwWy7MbTppWGUcaqkUGWi2ImqQhdjwNr0we9sOBgK5lie-SvPaGlO5fEf57lj_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123176478</pqid></control><display><type>article</type><title>Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides</title><source>American Physical Society Journals</source><creator>Zhang, Yajun ; Sahoo, M. P. K. ; Shimada, Takahiro ; Kitamura, Takayuki ; Wang, Jie</creator><creatorcontrib>Zhang, Yajun ; Sahoo, M. P. K. ; Shimada, Takahiro ; Kitamura, Takayuki ; Wang, Jie</creatorcontrib><description>Activating multiple symmetry modes and promoting a strong coupling between different modes by strain are indispensable to stabilize a polar ferroelectric (FE) phase from a nonpolar perovskite. Herein, through first-principles calculations, we propose an undiscovered and general avenue to engineering ferroelectricity in photovoltaic perovskites with a Ruddlesden-Popper (RP) structure. It is demonstrated that an experimentally accessible compressive strain can induce an in-plane polarization in RP perovskite halides thin films, resulting in an unusual paraelectric to FE phase transition. The detailed analysis on structure and energy reveals that the unusual FE phase transition in the perovskite halides stems from the strong coupling between strain and antiferrodistortive (AFD) mode. Further calculations show that the strain-AFD coupling-induced ferroelectricity is not only exhibited by perovskite halides but also observed in perovskite sulfides such as Ba3Zr2S7. Moreover, it is found that the strained FE thin film possesses a suitable band gap of 1.6 eV for photovoltaic application. These findings not only unfold a general way to engineering nonpolar-to-polar transition, but also open an avenue to design optimal FE semiconductors for solar cell applications.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.144110</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Compressive properties ; Coupling ; Design engineering ; Ferroelectric materials ; Ferroelectricity ; First principles ; Halides ; Linear polarization ; Mathematical analysis ; Perovskites ; Phase transitions ; Photovoltaic cells ; Solar cells ; Thin films</subject><ispartof>Physical review. B, 2017-10, Vol.96 (14), Article 144110</ispartof><rights>Copyright American Physical Society Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-1310c69f60e8d47a3b0a9fe2e1954016a6285b1978154ac0080431b19bfa87623</citedby><cites>FETCH-LOGICAL-c275t-1310c69f60e8d47a3b0a9fe2e1954016a6285b1978154ac0080431b19bfa87623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Sahoo, M. P. K.</creatorcontrib><creatorcontrib>Shimada, Takahiro</creatorcontrib><creatorcontrib>Kitamura, Takayuki</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><title>Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides</title><title>Physical review. B</title><description>Activating multiple symmetry modes and promoting a strong coupling between different modes by strain are indispensable to stabilize a polar ferroelectric (FE) phase from a nonpolar perovskite. Herein, through first-principles calculations, we propose an undiscovered and general avenue to engineering ferroelectricity in photovoltaic perovskites with a Ruddlesden-Popper (RP) structure. It is demonstrated that an experimentally accessible compressive strain can induce an in-plane polarization in RP perovskite halides thin films, resulting in an unusual paraelectric to FE phase transition. The detailed analysis on structure and energy reveals that the unusual FE phase transition in the perovskite halides stems from the strong coupling between strain and antiferrodistortive (AFD) mode. Further calculations show that the strain-AFD coupling-induced ferroelectricity is not only exhibited by perovskite halides but also observed in perovskite sulfides such as Ba3Zr2S7. Moreover, it is found that the strained FE thin film possesses a suitable band gap of 1.6 eV for photovoltaic application. These findings not only unfold a general way to engineering nonpolar-to-polar transition, but also open an avenue to design optimal FE semiconductors for solar cell applications.</description><subject>Compressive properties</subject><subject>Coupling</subject><subject>Design engineering</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Halides</subject><subject>Linear polarization</subject><subject>Mathematical analysis</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOHT_gE8FnztvPpo0jzr8goFj6nPImluW2bU1aQf7782Y-nA5l8OPew-HkBsKM0qB3y03h7jC_cNMyxkVInlnZMKE1LnWUp__7wVckmmMWwCgErQCPSHL9yFY3-a-dWOFLvO7PnQ9hqzGEDpssBqCr_xwyHybrUbnGowO23zZ9UcqTbePX37AbGMb7zBek4vaNhGnv3pFPp8eP-Yv-eLt-XV-v8grpoohp5xCJXUtAUsnlOVrsLpGhlQXIsWzkpXFmmpV0kLYCqAEwWky1rUtlWT8itye7qa83yPGwWy7MbTppWGUcaqkUGWi2ImqQhdjwNr0we9sOBgK5lie-SvPaGlO5fEf57lj_A</recordid><startdate>20171019</startdate><enddate>20171019</enddate><creator>Zhang, Yajun</creator><creator>Sahoo, M. P. K.</creator><creator>Shimada, Takahiro</creator><creator>Kitamura, Takayuki</creator><creator>Wang, Jie</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20171019</creationdate><title>Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides</title><author>Zhang, Yajun ; Sahoo, M. P. K. ; Shimada, Takahiro ; Kitamura, Takayuki ; Wang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-1310c69f60e8d47a3b0a9fe2e1954016a6285b1978154ac0080431b19bfa87623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compressive properties</topic><topic>Coupling</topic><topic>Design engineering</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Halides</topic><topic>Linear polarization</topic><topic>Mathematical analysis</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Sahoo, M. P. K.</creatorcontrib><creatorcontrib>Shimada, Takahiro</creatorcontrib><creatorcontrib>Kitamura, Takayuki</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yajun</au><au>Sahoo, M. P. K.</au><au>Shimada, Takahiro</au><au>Kitamura, Takayuki</au><au>Wang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides</atitle><jtitle>Physical review. B</jtitle><date>2017-10-19</date><risdate>2017</risdate><volume>96</volume><issue>14</issue><artnum>144110</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Activating multiple symmetry modes and promoting a strong coupling between different modes by strain are indispensable to stabilize a polar ferroelectric (FE) phase from a nonpolar perovskite. Herein, through first-principles calculations, we propose an undiscovered and general avenue to engineering ferroelectricity in photovoltaic perovskites with a Ruddlesden-Popper (RP) structure. It is demonstrated that an experimentally accessible compressive strain can induce an in-plane polarization in RP perovskite halides thin films, resulting in an unusual paraelectric to FE phase transition. The detailed analysis on structure and energy reveals that the unusual FE phase transition in the perovskite halides stems from the strong coupling between strain and antiferrodistortive (AFD) mode. Further calculations show that the strain-AFD coupling-induced ferroelectricity is not only exhibited by perovskite halides but also observed in perovskite sulfides such as Ba3Zr2S7. Moreover, it is found that the strained FE thin film possesses a suitable band gap of 1.6 eV for photovoltaic application. These findings not only unfold a general way to engineering nonpolar-to-polar transition, but also open an avenue to design optimal FE semiconductors for solar cell applications.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.144110</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-10, Vol.96 (14), Article 144110
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2123176478
source American Physical Society Journals
subjects Compressive properties
Coupling
Design engineering
Ferroelectric materials
Ferroelectricity
First principles
Halides
Linear polarization
Mathematical analysis
Perovskites
Phase transitions
Photovoltaic cells
Solar cells
Thin films
title Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-induced%20improper%20ferroelectricity%20in%20Ruddlesden-Popper%20perovskite%20halides&rft.jtitle=Physical%20review.%20B&rft.au=Zhang,%20Yajun&rft.date=2017-10-19&rft.volume=96&rft.issue=14&rft.artnum=144110&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.144110&rft_dat=%3Cproquest_cross%3E2123176478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123176478&rft_id=info:pmid/&rfr_iscdi=true