Strong-disorder approach for the Anderson localization transition
We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-07, Vol.96 (4), Article 045143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review. B |
container_volume | 96 |
creator | Mard, H. Javan Hoyos, José A. Miranda, E. Dobrosavljević, V. |
description | We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point. |
doi_str_mv | 10.1103/PhysRevB.96.045143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123168086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123168086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWGr_gE8LPu86uWwuj7WoFQqK9j0k2cRuqZuabIX6692y6tOcGQ7nDB9C1xgqjIHevmyO-dV_3VWKV8BqzOgZmhDGVakUV-f_uoZLNMt5CwCYgxKgJmj-1qfYvZdNm2NqfCrMfp-icZsixFT0G1_Mu-GcY1fsojO79tv07bD0yXS5PckrdBHMLvvZ75yi9cP9erEsV8-PT4v5qnQUq74UXBBogpVWSE8IVTXBtWQSW84Fs8QK4QJpGFOUOfCONrVsggQwwdZW0im6GWOH9z4PPvd6Gw-pGxo1wYRiLkHywUVGl0sx5-SD3qf2w6SjxqBPsPQfLK24HmHRH7zvXoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123168086</pqid></control><display><type>article</type><title>Strong-disorder approach for the Anderson localization transition</title><source>American Physical Society Journals</source><creator>Mard, H. Javan ; Hoyos, José A. ; Miranda, E. ; Dobrosavljević, V.</creator><creatorcontrib>Mard, H. Javan ; Hoyos, José A. ; Miranda, E. ; Dobrosavljević, V.</creatorcontrib><description>We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.045143</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anderson localization ; Coupling ; Localization ; Mathematical models ; Resistance ; Symmetry</subject><ispartof>Physical review. B, 2017-07, Vol.96 (4), Article 045143</ispartof><rights>Copyright American Physical Society Jul 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</citedby><cites>FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Mard, H. Javan</creatorcontrib><creatorcontrib>Hoyos, José A.</creatorcontrib><creatorcontrib>Miranda, E.</creatorcontrib><creatorcontrib>Dobrosavljević, V.</creatorcontrib><title>Strong-disorder approach for the Anderson localization transition</title><title>Physical review. B</title><description>We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.</description><subject>Anderson localization</subject><subject>Coupling</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Resistance</subject><subject>Symmetry</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWGr_gE8LPu86uWwuj7WoFQqK9j0k2cRuqZuabIX6692y6tOcGQ7nDB9C1xgqjIHevmyO-dV_3VWKV8BqzOgZmhDGVakUV-f_uoZLNMt5CwCYgxKgJmj-1qfYvZdNm2NqfCrMfp-icZsixFT0G1_Mu-GcY1fsojO79tv07bD0yXS5PckrdBHMLvvZ75yi9cP9erEsV8-PT4v5qnQUq74UXBBogpVWSE8IVTXBtWQSW84Fs8QK4QJpGFOUOfCONrVsggQwwdZW0im6GWOH9z4PPvd6Gw-pGxo1wYRiLkHywUVGl0sx5-SD3qf2w6SjxqBPsPQfLK24HmHRH7zvXoU</recordid><startdate>20170727</startdate><enddate>20170727</enddate><creator>Mard, H. Javan</creator><creator>Hoyos, José A.</creator><creator>Miranda, E.</creator><creator>Dobrosavljević, V.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170727</creationdate><title>Strong-disorder approach for the Anderson localization transition</title><author>Mard, H. Javan ; Hoyos, José A. ; Miranda, E. ; Dobrosavljević, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anderson localization</topic><topic>Coupling</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Resistance</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mard, H. Javan</creatorcontrib><creatorcontrib>Hoyos, José A.</creatorcontrib><creatorcontrib>Miranda, E.</creatorcontrib><creatorcontrib>Dobrosavljević, V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mard, H. Javan</au><au>Hoyos, José A.</au><au>Miranda, E.</au><au>Dobrosavljević, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong-disorder approach for the Anderson localization transition</atitle><jtitle>Physical review. B</jtitle><date>2017-07-27</date><risdate>2017</risdate><volume>96</volume><issue>4</issue><artnum>045143</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.045143</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2017-07, Vol.96 (4), Article 045143 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2123168086 |
source | American Physical Society Journals |
subjects | Anderson localization Coupling Localization Mathematical models Resistance Symmetry |
title | Strong-disorder approach for the Anderson localization transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong-disorder%20approach%20for%20the%20Anderson%20localization%20transition&rft.jtitle=Physical%20review.%20B&rft.au=Mard,%20H.%20Javan&rft.date=2017-07-27&rft.volume=96&rft.issue=4&rft.artnum=045143&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.045143&rft_dat=%3Cproquest_cross%3E2123168086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123168086&rft_id=info:pmid/&rfr_iscdi=true |