Strong-disorder approach for the Anderson localization transition

We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-07, Vol.96 (4), Article 045143
Hauptverfasser: Mard, H. Javan, Hoyos, José A., Miranda, E., Dobrosavljević, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. B
container_volume 96
creator Mard, H. Javan
Hoyos, José A.
Miranda, E.
Dobrosavljević, V.
description We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.
doi_str_mv 10.1103/PhysRevB.96.045143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123168086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123168086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWGr_gE8LPu86uWwuj7WoFQqK9j0k2cRuqZuabIX6692y6tOcGQ7nDB9C1xgqjIHevmyO-dV_3VWKV8BqzOgZmhDGVakUV-f_uoZLNMt5CwCYgxKgJmj-1qfYvZdNm2NqfCrMfp-icZsixFT0G1_Mu-GcY1fsojO79tv07bD0yXS5PckrdBHMLvvZ75yi9cP9erEsV8-PT4v5qnQUq74UXBBogpVWSE8IVTXBtWQSW84Fs8QK4QJpGFOUOfCONrVsggQwwdZW0im6GWOH9z4PPvd6Gw-pGxo1wYRiLkHywUVGl0sx5-SD3qf2w6SjxqBPsPQfLK24HmHRH7zvXoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123168086</pqid></control><display><type>article</type><title>Strong-disorder approach for the Anderson localization transition</title><source>American Physical Society Journals</source><creator>Mard, H. Javan ; Hoyos, José A. ; Miranda, E. ; Dobrosavljević, V.</creator><creatorcontrib>Mard, H. Javan ; Hoyos, José A. ; Miranda, E. ; Dobrosavljević, V.</creatorcontrib><description>We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.045143</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anderson localization ; Coupling ; Localization ; Mathematical models ; Resistance ; Symmetry</subject><ispartof>Physical review. B, 2017-07, Vol.96 (4), Article 045143</ispartof><rights>Copyright American Physical Society Jul 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</citedby><cites>FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Mard, H. Javan</creatorcontrib><creatorcontrib>Hoyos, José A.</creatorcontrib><creatorcontrib>Miranda, E.</creatorcontrib><creatorcontrib>Dobrosavljević, V.</creatorcontrib><title>Strong-disorder approach for the Anderson localization transition</title><title>Physical review. B</title><description>We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.</description><subject>Anderson localization</subject><subject>Coupling</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Resistance</subject><subject>Symmetry</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWGr_gE8LPu86uWwuj7WoFQqK9j0k2cRuqZuabIX6692y6tOcGQ7nDB9C1xgqjIHevmyO-dV_3VWKV8BqzOgZmhDGVakUV-f_uoZLNMt5CwCYgxKgJmj-1qfYvZdNm2NqfCrMfp-icZsixFT0G1_Mu-GcY1fsojO79tv07bD0yXS5PckrdBHMLvvZ75yi9cP9erEsV8-PT4v5qnQUq74UXBBogpVWSE8IVTXBtWQSW84Fs8QK4QJpGFOUOfCONrVsggQwwdZW0im6GWOH9z4PPvd6Gw-pGxo1wYRiLkHywUVGl0sx5-SD3qf2w6SjxqBPsPQfLK24HmHRH7zvXoU</recordid><startdate>20170727</startdate><enddate>20170727</enddate><creator>Mard, H. Javan</creator><creator>Hoyos, José A.</creator><creator>Miranda, E.</creator><creator>Dobrosavljević, V.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170727</creationdate><title>Strong-disorder approach for the Anderson localization transition</title><author>Mard, H. Javan ; Hoyos, José A. ; Miranda, E. ; Dobrosavljević, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-76720dfb8b78e223952158481b6674b2b77cf2d44934c0ec3d58df800afb5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anderson localization</topic><topic>Coupling</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Resistance</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mard, H. Javan</creatorcontrib><creatorcontrib>Hoyos, José A.</creatorcontrib><creatorcontrib>Miranda, E.</creatorcontrib><creatorcontrib>Dobrosavljević, V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mard, H. Javan</au><au>Hoyos, José A.</au><au>Miranda, E.</au><au>Dobrosavljević, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong-disorder approach for the Anderson localization transition</atitle><jtitle>Physical review. B</jtitle><date>2017-07-27</date><risdate>2017</risdate><volume>96</volume><issue>4</issue><artnum>045143</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is dc+=∞, (iii) find that the scaling function shows a previously reported ‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.045143</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-07, Vol.96 (4), Article 045143
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2123168086
source American Physical Society Journals
subjects Anderson localization
Coupling
Localization
Mathematical models
Resistance
Symmetry
title Strong-disorder approach for the Anderson localization transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong-disorder%20approach%20for%20the%20Anderson%20localization%20transition&rft.jtitle=Physical%20review.%20B&rft.au=Mard,%20H.%20Javan&rft.date=2017-07-27&rft.volume=96&rft.issue=4&rft.artnum=045143&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.045143&rft_dat=%3Cproquest_cross%3E2123168086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123168086&rft_id=info:pmid/&rfr_iscdi=true