Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method

•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2018-10, Vol.500, p.5-10
Hauptverfasser: Rost, H.-J., Menzel, R., Siche, D., Juda, U., Kayser, S., Kießling, F.M., Sylla, L., Richter, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 5
container_title Journal of crystal growth
container_volume 500
creator Rost, H.-J.
Menzel, R.
Siche, D.
Juda, U.
Kayser, S.
Kießling, F.M.
Sylla, L.
Richter, T.
description •A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm. The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided.
doi_str_mv 10.1016/j.jcrysgro.2018.08.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123165822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002202481830352X</els_id><sourcerecordid>2123165822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QQKed51kv29KtSoUPKiXXkI-ZmvW7qYmW6X_3pTqWRhmILzvM5OXkEsGKQNWXndpp_0urLxLObA6hVhQHJEJq6ssKQD4MZnEzhPgeX1KzkLoAKKTwYQs77BFPdLW-V6O1g3UDvTFJnviKNeBRuz3QOP7WvoVUmNljyN6qrbrDxoQTaBqRyXtnbGtRUPnyyQq3p05JydtJODF75ySt_n96-wxWTw_PM1uF4nOchgTpcqqrLTBpio14xqLIlNZBpBXDUBW5jzPuS4VKBnPb6SqGa9ZvJ41OWPQZlNydeBuvPvcYhhF57Z-iCsFZzxjZVFzHlXlQaW9C8FjKzbe9tLvBAOxz1F04i9Hsc9RQCwoovHmYMT4hy-LXgRtcdBorI_JCePsf4gfIup9tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123165822</pqid></control><display><type>article</type><title>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</title><source>Elsevier ScienceDirect Journals</source><creator>Rost, H.-J. ; Menzel, R. ; Siche, D. ; Juda, U. ; Kayser, S. ; Kießling, F.M. ; Sylla, L. ; Richter, T.</creator><creatorcontrib>Rost, H.-J. ; Menzel, R. ; Siche, D. ; Juda, U. ; Kayser, S. ; Kießling, F.M. ; Sylla, L. ; Richter, T.</creatorcontrib><description>•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm. The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2018.08.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Defects ; A2. Bulk crystal growth ; A2. Floating zone technique ; A2. Single crystal growth ; B2. Semiconducting silicon ; Crucibles ; Crystal defects ; Crystal growth ; Crystal structure ; Crystallinity ; Dislocations ; Heating ; Polycrystals ; Seeds ; Semiconductors ; Silicon ; Single crystals ; Thermal stress</subject><ispartof>Journal of crystal growth, 2018-10, Vol.500, p.5-10</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</citedby><cites>FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002202481830352X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Rost, H.-J.</creatorcontrib><creatorcontrib>Menzel, R.</creatorcontrib><creatorcontrib>Siche, D.</creatorcontrib><creatorcontrib>Juda, U.</creatorcontrib><creatorcontrib>Kayser, S.</creatorcontrib><creatorcontrib>Kießling, F.M.</creatorcontrib><creatorcontrib>Sylla, L.</creatorcontrib><creatorcontrib>Richter, T.</creatorcontrib><title>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</title><title>Journal of crystal growth</title><description>•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm. The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided.</description><subject>A1. Defects</subject><subject>A2. Bulk crystal growth</subject><subject>A2. Floating zone technique</subject><subject>A2. Single crystal growth</subject><subject>B2. Semiconducting silicon</subject><subject>Crucibles</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dislocations</subject><subject>Heating</subject><subject>Polycrystals</subject><subject>Seeds</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Thermal stress</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QQKed51kv29KtSoUPKiXXkI-ZmvW7qYmW6X_3pTqWRhmILzvM5OXkEsGKQNWXndpp_0urLxLObA6hVhQHJEJq6ssKQD4MZnEzhPgeX1KzkLoAKKTwYQs77BFPdLW-V6O1g3UDvTFJnviKNeBRuz3QOP7WvoVUmNljyN6qrbrDxoQTaBqRyXtnbGtRUPnyyQq3p05JydtJODF75ySt_n96-wxWTw_PM1uF4nOchgTpcqqrLTBpio14xqLIlNZBpBXDUBW5jzPuS4VKBnPb6SqGa9ZvJ41OWPQZlNydeBuvPvcYhhF57Z-iCsFZzxjZVFzHlXlQaW9C8FjKzbe9tLvBAOxz1F04i9Hsc9RQCwoovHmYMT4hy-LXgRtcdBorI_JCePsf4gfIup9tg</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Rost, H.-J.</creator><creator>Menzel, R.</creator><creator>Siche, D.</creator><creator>Juda, U.</creator><creator>Kayser, S.</creator><creator>Kießling, F.M.</creator><creator>Sylla, L.</creator><creator>Richter, T.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181015</creationdate><title>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</title><author>Rost, H.-J. ; Menzel, R. ; Siche, D. ; Juda, U. ; Kayser, S. ; Kießling, F.M. ; Sylla, L. ; Richter, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A1. Defects</topic><topic>A2. Bulk crystal growth</topic><topic>A2. Floating zone technique</topic><topic>A2. Single crystal growth</topic><topic>B2. Semiconducting silicon</topic><topic>Crucibles</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dislocations</topic><topic>Heating</topic><topic>Polycrystals</topic><topic>Seeds</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rost, H.-J.</creatorcontrib><creatorcontrib>Menzel, R.</creatorcontrib><creatorcontrib>Siche, D.</creatorcontrib><creatorcontrib>Juda, U.</creatorcontrib><creatorcontrib>Kayser, S.</creatorcontrib><creatorcontrib>Kießling, F.M.</creatorcontrib><creatorcontrib>Sylla, L.</creatorcontrib><creatorcontrib>Richter, T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rost, H.-J.</au><au>Menzel, R.</au><au>Siche, D.</au><au>Juda, U.</au><au>Kayser, S.</au><au>Kießling, F.M.</au><au>Sylla, L.</au><au>Richter, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</atitle><jtitle>Journal of crystal growth</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>500</volume><spage>5</spage><epage>10</epage><pages>5-10</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm. The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2018.08.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2018-10, Vol.500, p.5-10
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_journals_2123165822
source Elsevier ScienceDirect Journals
subjects A1. Defects
A2. Bulk crystal growth
A2. Floating zone technique
A2. Single crystal growth
B2. Semiconducting silicon
Crucibles
Crystal defects
Crystal growth
Crystal structure
Crystallinity
Dislocations
Heating
Polycrystals
Seeds
Semiconductors
Silicon
Single crystals
Thermal stress
title Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20formation%20in%20Si-crystals%20grown%20on%20large%20diameter%20bulk%20seeds%20by%20a%20modified%20FZ-method&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Rost,%20H.-J.&rft.date=2018-10-15&rft.volume=500&rft.spage=5&rft.epage=10&rft.pages=5-10&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2018.08.005&rft_dat=%3Cproquest_cross%3E2123165822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123165822&rft_id=info:pmid/&rft_els_id=S002202481830352X&rfr_iscdi=true