Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method
•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Singl...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2018-10, Vol.500, p.5-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 5 |
container_title | Journal of crystal growth |
container_volume | 500 |
creator | Rost, H.-J. Menzel, R. Siche, D. Juda, U. Kayser, S. Kießling, F.M. Sylla, L. Richter, T. |
description | •A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm.
The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided. |
doi_str_mv | 10.1016/j.jcrysgro.2018.08.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123165822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002202481830352X</els_id><sourcerecordid>2123165822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QQKed51kv29KtSoUPKiXXkI-ZmvW7qYmW6X_3pTqWRhmILzvM5OXkEsGKQNWXndpp_0urLxLObA6hVhQHJEJq6ssKQD4MZnEzhPgeX1KzkLoAKKTwYQs77BFPdLW-V6O1g3UDvTFJnviKNeBRuz3QOP7WvoVUmNljyN6qrbrDxoQTaBqRyXtnbGtRUPnyyQq3p05JydtJODF75ySt_n96-wxWTw_PM1uF4nOchgTpcqqrLTBpio14xqLIlNZBpBXDUBW5jzPuS4VKBnPb6SqGa9ZvJ41OWPQZlNydeBuvPvcYhhF57Z-iCsFZzxjZVFzHlXlQaW9C8FjKzbe9tLvBAOxz1F04i9Hsc9RQCwoovHmYMT4hy-LXgRtcdBorI_JCePsf4gfIup9tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123165822</pqid></control><display><type>article</type><title>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</title><source>Elsevier ScienceDirect Journals</source><creator>Rost, H.-J. ; Menzel, R. ; Siche, D. ; Juda, U. ; Kayser, S. ; Kießling, F.M. ; Sylla, L. ; Richter, T.</creator><creatorcontrib>Rost, H.-J. ; Menzel, R. ; Siche, D. ; Juda, U. ; Kayser, S. ; Kießling, F.M. ; Sylla, L. ; Richter, T.</creatorcontrib><description>•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm.
The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2018.08.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Defects ; A2. Bulk crystal growth ; A2. Floating zone technique ; A2. Single crystal growth ; B2. Semiconducting silicon ; Crucibles ; Crystal defects ; Crystal growth ; Crystal structure ; Crystallinity ; Dislocations ; Heating ; Polycrystals ; Seeds ; Semiconductors ; Silicon ; Single crystals ; Thermal stress</subject><ispartof>Journal of crystal growth, 2018-10, Vol.500, p.5-10</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</citedby><cites>FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002202481830352X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Rost, H.-J.</creatorcontrib><creatorcontrib>Menzel, R.</creatorcontrib><creatorcontrib>Siche, D.</creatorcontrib><creatorcontrib>Juda, U.</creatorcontrib><creatorcontrib>Kayser, S.</creatorcontrib><creatorcontrib>Kießling, F.M.</creatorcontrib><creatorcontrib>Sylla, L.</creatorcontrib><creatorcontrib>Richter, T.</creatorcontrib><title>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</title><title>Journal of crystal growth</title><description>•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm.
The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided.</description><subject>A1. Defects</subject><subject>A2. Bulk crystal growth</subject><subject>A2. Floating zone technique</subject><subject>A2. Single crystal growth</subject><subject>B2. Semiconducting silicon</subject><subject>Crucibles</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dislocations</subject><subject>Heating</subject><subject>Polycrystals</subject><subject>Seeds</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Thermal stress</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QQKed51kv29KtSoUPKiXXkI-ZmvW7qYmW6X_3pTqWRhmILzvM5OXkEsGKQNWXndpp_0urLxLObA6hVhQHJEJq6ssKQD4MZnEzhPgeX1KzkLoAKKTwYQs77BFPdLW-V6O1g3UDvTFJnviKNeBRuz3QOP7WvoVUmNljyN6qrbrDxoQTaBqRyXtnbGtRUPnyyQq3p05JydtJODF75ySt_n96-wxWTw_PM1uF4nOchgTpcqqrLTBpio14xqLIlNZBpBXDUBW5jzPuS4VKBnPb6SqGa9ZvJ41OWPQZlNydeBuvPvcYhhF57Z-iCsFZzxjZVFzHlXlQaW9C8FjKzbe9tLvBAOxz1F04i9Hsc9RQCwoovHmYMT4hy-LXgRtcdBorI_JCePsf4gfIup9tg</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Rost, H.-J.</creator><creator>Menzel, R.</creator><creator>Siche, D.</creator><creator>Juda, U.</creator><creator>Kayser, S.</creator><creator>Kießling, F.M.</creator><creator>Sylla, L.</creator><creator>Richter, T.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181015</creationdate><title>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</title><author>Rost, H.-J. ; Menzel, R. ; Siche, D. ; Juda, U. ; Kayser, S. ; Kießling, F.M. ; Sylla, L. ; Richter, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-bb6767cde976c12ce553b3300479003642442c6b0ba2489ab81281161194110f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A1. Defects</topic><topic>A2. Bulk crystal growth</topic><topic>A2. Floating zone technique</topic><topic>A2. Single crystal growth</topic><topic>B2. Semiconducting silicon</topic><topic>Crucibles</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dislocations</topic><topic>Heating</topic><topic>Polycrystals</topic><topic>Seeds</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rost, H.-J.</creatorcontrib><creatorcontrib>Menzel, R.</creatorcontrib><creatorcontrib>Siche, D.</creatorcontrib><creatorcontrib>Juda, U.</creatorcontrib><creatorcontrib>Kayser, S.</creatorcontrib><creatorcontrib>Kießling, F.M.</creatorcontrib><creatorcontrib>Sylla, L.</creatorcontrib><creatorcontrib>Richter, T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rost, H.-J.</au><au>Menzel, R.</au><au>Siche, D.</au><au>Juda, U.</au><au>Kayser, S.</au><au>Kießling, F.M.</au><au>Sylla, L.</au><au>Richter, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method</atitle><jtitle>Journal of crystal growth</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>500</volume><spage>5</spage><epage>10</epage><pages>5-10</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•A new crucible free method to grow low dislocation density, single crystalline Si crystals without cone is proposed.•It is characterized by growth on large diameter seeds without using the Dash-technique.•A combination of RF- and MF heated susceptor (side heater) reduces the thermal stresses.•Single crystalline growth could be preserved for a length up to 90 mm.
The crucible free growth of dislocation free respectively low defect single crystals on large diameter silicon seeds without using the common Dash technique was investigated. A promising concept to reach this aim was to reduce the thermal gradients and stresses. Therefore, a combination of RF- and MF heating, additionally to the standard FZ setup, was used by implementation of a further coil which is surrounding the 4 inch diameter seeds. The heat dissipation conditions, the growth velocity and the ratio between RF- and MF power were varied. Crystals were grown with a total length up to 120 mm. After 90 mm of single crystalline growth the crystals became polycrystalline. All grown crystals, independent of the seed structure or preparation procedure, developed a dislocation network during heating already before melting the seed surface and growth start. By noticeable reduction of the thermal stresses the single crystalline status could be maintained for a certain distance and an immediate transition to the polycrystalline growth could be avoided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2018.08.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2018-10, Vol.500, p.5-10 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_journals_2123165822 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Defects A2. Bulk crystal growth A2. Floating zone technique A2. Single crystal growth B2. Semiconducting silicon Crucibles Crystal defects Crystal growth Crystal structure Crystallinity Dislocations Heating Polycrystals Seeds Semiconductors Silicon Single crystals Thermal stress |
title | Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20formation%20in%20Si-crystals%20grown%20on%20large%20diameter%20bulk%20seeds%20by%20a%20modified%20FZ-method&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Rost,%20H.-J.&rft.date=2018-10-15&rft.volume=500&rft.spage=5&rft.epage=10&rft.pages=5-10&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2018.08.005&rft_dat=%3Cproquest_cross%3E2123165822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123165822&rft_id=info:pmid/&rft_els_id=S002202481830352X&rfr_iscdi=true |