Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface

Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-02, Vol.97 (7), Article 075403
Hauptverfasser: Ming, Fangfei, Smith, Tyler S., Johnston, Steven, Snijders, Paul C., Weitering, Hanno H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physical review. B
container_volume 97
creator Ming, Fangfei
Smith, Tyler S.
Johnston, Steven
Snijders, Paul C.
Weitering, Hanno H.
description Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor.
doi_str_mv 10.1103/PhysRevB.97.075403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123165768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123165768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</originalsourceid><addsrcrecordid>eNo9UEFOwzAQtBBIVKUf4GSJc8raTuL4CBVQpCIQ6gUuluOsaao0LnaC1N9jVOC0o9nR7swQcslgzhiI65fNIb7i1-1cyTnIIgdxQiY8L1WmVKlO_3EB52QW4xYAWAlKgpqQt3cMPqtbE6np_c50B9r2tE84WtMh3fgOs8bvsaFPfhjSMo6dGXyI1PfU0CG0pv9IVKCx7VqbyDgGZyxekDNnuoiz3zkl6_u79WKZrZ4fHhc3q8wKpoaMV5UVouAOXVMbUTQGreBK5NJWFoWyUCsUFbBkmiOgcylUbjkyWacQYkqujmf3wX-OGAe99WPo00fNGResLGRZJRU_qmzwMQZ0eh_anQkHzUD_lKj_StRK6mOJ4ht0jGdx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123165768</pqid></control><display><type>article</type><title>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</title><source>American Physical Society Journals</source><creator>Ming, Fangfei ; Smith, Tyler S. ; Johnston, Steven ; Snijders, Paul C. ; Weitering, Hanno H.</creator><creatorcontrib>Ming, Fangfei ; Smith, Tyler S. ; Johnston, Steven ; Snijders, Paul C. ; Weitering, Hanno H.</creatorcontrib><description>Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.075403</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bias ; Copper compounds ; Copper oxides ; Domains ; Insulators ; Silicon substrates ; Spectra ; Spectrum analysis ; Stability ; Superconductivity</subject><ispartof>Physical review. B, 2018-02, Vol.97 (7), Article 075403</ispartof><rights>Copyright American Physical Society Feb 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</citedby><cites>FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Ming, Fangfei</creatorcontrib><creatorcontrib>Smith, Tyler S.</creatorcontrib><creatorcontrib>Johnston, Steven</creatorcontrib><creatorcontrib>Snijders, Paul C.</creatorcontrib><creatorcontrib>Weitering, Hanno H.</creatorcontrib><title>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</title><title>Physical review. B</title><description>Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor.</description><subject>Bias</subject><subject>Copper compounds</subject><subject>Copper oxides</subject><subject>Domains</subject><subject>Insulators</subject><subject>Silicon substrates</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Superconductivity</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UEFOwzAQtBBIVKUf4GSJc8raTuL4CBVQpCIQ6gUuluOsaao0LnaC1N9jVOC0o9nR7swQcslgzhiI65fNIb7i1-1cyTnIIgdxQiY8L1WmVKlO_3EB52QW4xYAWAlKgpqQt3cMPqtbE6np_c50B9r2tE84WtMh3fgOs8bvsaFPfhjSMo6dGXyI1PfU0CG0pv9IVKCx7VqbyDgGZyxekDNnuoiz3zkl6_u79WKZrZ4fHhc3q8wKpoaMV5UVouAOXVMbUTQGreBK5NJWFoWyUCsUFbBkmiOgcylUbjkyWacQYkqujmf3wX-OGAe99WPo00fNGResLGRZJRU_qmzwMQZ0eh_anQkHzUD_lKj_StRK6mOJ4ht0jGdx</recordid><startdate>20180205</startdate><enddate>20180205</enddate><creator>Ming, Fangfei</creator><creator>Smith, Tyler S.</creator><creator>Johnston, Steven</creator><creator>Snijders, Paul C.</creator><creator>Weitering, Hanno H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180205</creationdate><title>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</title><author>Ming, Fangfei ; Smith, Tyler S. ; Johnston, Steven ; Snijders, Paul C. ; Weitering, Hanno H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Copper compounds</topic><topic>Copper oxides</topic><topic>Domains</topic><topic>Insulators</topic><topic>Silicon substrates</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Fangfei</creatorcontrib><creatorcontrib>Smith, Tyler S.</creatorcontrib><creatorcontrib>Johnston, Steven</creatorcontrib><creatorcontrib>Snijders, Paul C.</creatorcontrib><creatorcontrib>Weitering, Hanno H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Fangfei</au><au>Smith, Tyler S.</au><au>Johnston, Steven</au><au>Snijders, Paul C.</au><au>Weitering, Hanno H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</atitle><jtitle>Physical review. B</jtitle><date>2018-02-05</date><risdate>2018</risdate><volume>97</volume><issue>7</issue><artnum>075403</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.075403</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-02, Vol.97 (7), Article 075403
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2123165768
source American Physical Society Journals
subjects Bias
Copper compounds
Copper oxides
Domains
Insulators
Silicon substrates
Spectra
Spectrum analysis
Stability
Superconductivity
title Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-bias%20anomaly%20in%20nanoscale%20hole-doped%20Mott%20insulators%20on%20a%20triangular%20silicon%20surface&rft.jtitle=Physical%20review.%20B&rft.au=Ming,%20Fangfei&rft.date=2018-02-05&rft.volume=97&rft.issue=7&rft.artnum=075403&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.075403&rft_dat=%3Cproquest_cross%3E2123165768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123165768&rft_id=info:pmid/&rfr_iscdi=true