Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface
Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this sy...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-02, Vol.97 (7), Article 075403 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physical review. B |
container_volume | 97 |
creator | Ming, Fangfei Smith, Tyler S. Johnston, Steven Snijders, Paul C. Weitering, Hanno H. |
description | Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor. |
doi_str_mv | 10.1103/PhysRevB.97.075403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123165768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123165768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</originalsourceid><addsrcrecordid>eNo9UEFOwzAQtBBIVKUf4GSJc8raTuL4CBVQpCIQ6gUuluOsaao0LnaC1N9jVOC0o9nR7swQcslgzhiI65fNIb7i1-1cyTnIIgdxQiY8L1WmVKlO_3EB52QW4xYAWAlKgpqQt3cMPqtbE6np_c50B9r2tE84WtMh3fgOs8bvsaFPfhjSMo6dGXyI1PfU0CG0pv9IVKCx7VqbyDgGZyxekDNnuoiz3zkl6_u79WKZrZ4fHhc3q8wKpoaMV5UVouAOXVMbUTQGreBK5NJWFoWyUCsUFbBkmiOgcylUbjkyWacQYkqujmf3wX-OGAe99WPo00fNGResLGRZJRU_qmzwMQZ0eh_anQkHzUD_lKj_StRK6mOJ4ht0jGdx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123165768</pqid></control><display><type>article</type><title>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</title><source>American Physical Society Journals</source><creator>Ming, Fangfei ; Smith, Tyler S. ; Johnston, Steven ; Snijders, Paul C. ; Weitering, Hanno H.</creator><creatorcontrib>Ming, Fangfei ; Smith, Tyler S. ; Johnston, Steven ; Snijders, Paul C. ; Weitering, Hanno H.</creatorcontrib><description>Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.075403</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bias ; Copper compounds ; Copper oxides ; Domains ; Insulators ; Silicon substrates ; Spectra ; Spectrum analysis ; Stability ; Superconductivity</subject><ispartof>Physical review. B, 2018-02, Vol.97 (7), Article 075403</ispartof><rights>Copyright American Physical Society Feb 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</citedby><cites>FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Ming, Fangfei</creatorcontrib><creatorcontrib>Smith, Tyler S.</creatorcontrib><creatorcontrib>Johnston, Steven</creatorcontrib><creatorcontrib>Snijders, Paul C.</creatorcontrib><creatorcontrib>Weitering, Hanno H.</creatorcontrib><title>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</title><title>Physical review. B</title><description>Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor.</description><subject>Bias</subject><subject>Copper compounds</subject><subject>Copper oxides</subject><subject>Domains</subject><subject>Insulators</subject><subject>Silicon substrates</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Superconductivity</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UEFOwzAQtBBIVKUf4GSJc8raTuL4CBVQpCIQ6gUuluOsaao0LnaC1N9jVOC0o9nR7swQcslgzhiI65fNIb7i1-1cyTnIIgdxQiY8L1WmVKlO_3EB52QW4xYAWAlKgpqQt3cMPqtbE6np_c50B9r2tE84WtMh3fgOs8bvsaFPfhjSMo6dGXyI1PfU0CG0pv9IVKCx7VqbyDgGZyxekDNnuoiz3zkl6_u79WKZrZ4fHhc3q8wKpoaMV5UVouAOXVMbUTQGreBK5NJWFoWyUCsUFbBkmiOgcylUbjkyWacQYkqujmf3wX-OGAe99WPo00fNGResLGRZJRU_qmzwMQZ0eh_anQkHzUD_lKj_StRK6mOJ4ht0jGdx</recordid><startdate>20180205</startdate><enddate>20180205</enddate><creator>Ming, Fangfei</creator><creator>Smith, Tyler S.</creator><creator>Johnston, Steven</creator><creator>Snijders, Paul C.</creator><creator>Weitering, Hanno H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180205</creationdate><title>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</title><author>Ming, Fangfei ; Smith, Tyler S. ; Johnston, Steven ; Snijders, Paul C. ; Weitering, Hanno H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-288c3352fefdba35daec329347c8ce39c0b9e38010012e0eff9964c2e17b6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Copper compounds</topic><topic>Copper oxides</topic><topic>Domains</topic><topic>Insulators</topic><topic>Silicon substrates</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Fangfei</creatorcontrib><creatorcontrib>Smith, Tyler S.</creatorcontrib><creatorcontrib>Johnston, Steven</creatorcontrib><creatorcontrib>Snijders, Paul C.</creatorcontrib><creatorcontrib>Weitering, Hanno H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Fangfei</au><au>Smith, Tyler S.</au><au>Johnston, Steven</au><au>Snijders, Paul C.</au><au>Weitering, Hanno H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface</atitle><jtitle>Physical review. B</jtitle><date>2018-02-05</date><risdate>2018</risdate><volume>97</volume><issue>7</issue><artnum>075403</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Adsorption of 1/3 monolayer of Sn on a heavily doped p-type Si(111) substrate results in the formation of a hole-doped Mott insulator, with electronic properties that are remarkably similar to those of the high-Tc copper oxide compounds. In this work, we show that the maximum hole-density of this system increases with decreasing domain size as the area of the Mott insulating domains approaches the nanoscale regime. Concomitantly, scanning tunneling spectroscopy (STS) data at 4.4 K reveal an increasingly prominent zero-bias anomaly (ZBA). We consider two different scenarios as potential mechanisms for this ZBA: chiral dx2−y2+idxy wave superconductivity and a dynamical Coulomb blockade (DCB) effect. The latter arises due to the formation of a resistive depletion layer between the nanodomains and the substrate. Both models fit the tunneling spectra with weaker ZBAs, while the DCB model clearly fits better to spectra recorded at higher temperatures or from the smallest domains with the strongest ZBA. Consistently, STS spectra from the lightly doped substrates display oscillatory behavior that can be attributed to conventional Coulomb staircase behavior, which becomes stronger for smaller sized domains. We conclude that the ZBA is predominantly due to a DCB effect, while a superconducting instability is absent or a minor contributing factor.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.075403</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-02, Vol.97 (7), Article 075403 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2123165768 |
source | American Physical Society Journals |
subjects | Bias Copper compounds Copper oxides Domains Insulators Silicon substrates Spectra Spectrum analysis Stability Superconductivity |
title | Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-bias%20anomaly%20in%20nanoscale%20hole-doped%20Mott%20insulators%20on%20a%20triangular%20silicon%20surface&rft.jtitle=Physical%20review.%20B&rft.au=Ming,%20Fangfei&rft.date=2018-02-05&rft.volume=97&rft.issue=7&rft.artnum=075403&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.075403&rft_dat=%3Cproquest_cross%3E2123165768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123165768&rft_id=info:pmid/&rfr_iscdi=true |