A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor

Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2018-09, Vol.123 (18), p.10,023-10,036
Hauptverfasser: Sang, Wenjun, Huang, Qian, Tian, Wenshou, Wright, Jonathon S., Zhang, Jiankai, Tian, Hongying, Luo, Jiali, Hu, Dingzhu, Han, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10,036
container_issue 18
container_start_page 10,023
container_title Journal of geophysical research. Atmospheres
container_volume 123
creator Sang, Wenjun
Huang, Qian
Tian, Wenshou
Wright, Jonathon S.
Zhang, Jiankai
Tian, Hongying
Luo, Jiali
Hu, Dingzhu
Han, Yuanyuan
description Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection. Key Points Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing
doi_str_mv 10.1029/2017JD028069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123121228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123121228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKo3f0DAq6tJdrObHEtbq2Wl4PdtySaTdkvd1GTb0n9vpCKeHIaZ4eV5Z2AQuqDkmhImbxihxXREmCC5PEI9RnOZCCnz49-5eD9F5yEsSQxB0oxnPWQGuFR-DnhszB4_OAMr_NRt4uxa3C2ibi3oDjuLZ1vwYeFc17RzPHTtNupNpGKWbgc--rzqXFgvwDcav6kuaq9q7fwZOrFqFeD8p_fRy-34eXiXlLPJ_XBQJjqjVCZcWanr2pJUGgVKpUJo4ISauuaMS12IXNLCSJODBNCWS2KZEjWnCgiPtj66POxde_e5gdBVS7fxbTxZMcpSGgsTkbo6UNq7EDzYau2bD-X3FSXV9yurv6-MeHrAd80K9v-y1XTyOOKZyGT6BZfOdSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123121228</pqid></control><display><type>article</type><title>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</title><source>Wiley Journals</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Sang, Wenjun ; Huang, Qian ; Tian, Wenshou ; Wright, Jonathon S. ; Zhang, Jiankai ; Tian, Hongying ; Luo, Jiali ; Hu, Dingzhu ; Han, Yuanyuan</creator><creatorcontrib>Sang, Wenjun ; Huang, Qian ; Tian, Wenshou ; Wright, Jonathon S. ; Zhang, Jiankai ; Tian, Hongying ; Luo, Jiali ; Hu, Dingzhu ; Han, Yuanyuan</creatorcontrib><description>Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection. Key Points Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2017JD028069</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Computer simulation ; Convection ; Geophysics ; Gravitational waves ; Gravity ; gravity wave breaking ; Gravity waves ; Humidity ; large eddy model ; Lower stratosphere ; Moisture content ; overshooting convection ; Parameterization ; Sensitivity ; Stratosphere ; stratospheric water vapor ; Sublimation ; Tracking ; Transport ; Tropopause ; Turbulent mixing ; Turret ; Vertical wind shear ; Vortices ; Water content ; Water vapor ; Water vapor content ; Water vapor transport ; Water vapour ; Wave breaking ; Wind ; Wind shear</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-09, Vol.123 (18), p.10,023-10,036</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</citedby><cites>FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</cites><orcidid>0000-0003-4770-1333 ; 0000-0002-0993-9319 ; 0000-0001-6551-7017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2017JD028069$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2017JD028069$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Sang, Wenjun</creatorcontrib><creatorcontrib>Huang, Qian</creatorcontrib><creatorcontrib>Tian, Wenshou</creatorcontrib><creatorcontrib>Wright, Jonathon S.</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Tian, Hongying</creatorcontrib><creatorcontrib>Luo, Jiali</creatorcontrib><creatorcontrib>Hu, Dingzhu</creatorcontrib><creatorcontrib>Han, Yuanyuan</creatorcontrib><title>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</title><title>Journal of geophysical research. Atmospheres</title><description>Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection. Key Points Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing</description><subject>Computer simulation</subject><subject>Convection</subject><subject>Geophysics</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>gravity wave breaking</subject><subject>Gravity waves</subject><subject>Humidity</subject><subject>large eddy model</subject><subject>Lower stratosphere</subject><subject>Moisture content</subject><subject>overshooting convection</subject><subject>Parameterization</subject><subject>Sensitivity</subject><subject>Stratosphere</subject><subject>stratospheric water vapor</subject><subject>Sublimation</subject><subject>Tracking</subject><subject>Transport</subject><subject>Tropopause</subject><subject>Turbulent mixing</subject><subject>Turret</subject><subject>Vertical wind shear</subject><subject>Vortices</subject><subject>Water content</subject><subject>Water vapor</subject><subject>Water vapor content</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Wave breaking</subject><subject>Wind</subject><subject>Wind shear</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKo3f0DAq6tJdrObHEtbq2Wl4PdtySaTdkvd1GTb0n9vpCKeHIaZ4eV5Z2AQuqDkmhImbxihxXREmCC5PEI9RnOZCCnz49-5eD9F5yEsSQxB0oxnPWQGuFR-DnhszB4_OAMr_NRt4uxa3C2ibi3oDjuLZ1vwYeFc17RzPHTtNupNpGKWbgc--rzqXFgvwDcav6kuaq9q7fwZOrFqFeD8p_fRy-34eXiXlLPJ_XBQJjqjVCZcWanr2pJUGgVKpUJo4ISauuaMS12IXNLCSJODBNCWS2KZEjWnCgiPtj66POxde_e5gdBVS7fxbTxZMcpSGgsTkbo6UNq7EDzYau2bD-X3FSXV9yurv6-MeHrAd80K9v-y1XTyOOKZyGT6BZfOdSs</recordid><startdate>20180927</startdate><enddate>20180927</enddate><creator>Sang, Wenjun</creator><creator>Huang, Qian</creator><creator>Tian, Wenshou</creator><creator>Wright, Jonathon S.</creator><creator>Zhang, Jiankai</creator><creator>Tian, Hongying</creator><creator>Luo, Jiali</creator><creator>Hu, Dingzhu</creator><creator>Han, Yuanyuan</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4770-1333</orcidid><orcidid>https://orcid.org/0000-0002-0993-9319</orcidid><orcidid>https://orcid.org/0000-0001-6551-7017</orcidid></search><sort><creationdate>20180927</creationdate><title>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</title><author>Sang, Wenjun ; Huang, Qian ; Tian, Wenshou ; Wright, Jonathon S. ; Zhang, Jiankai ; Tian, Hongying ; Luo, Jiali ; Hu, Dingzhu ; Han, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Convection</topic><topic>Geophysics</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>gravity wave breaking</topic><topic>Gravity waves</topic><topic>Humidity</topic><topic>large eddy model</topic><topic>Lower stratosphere</topic><topic>Moisture content</topic><topic>overshooting convection</topic><topic>Parameterization</topic><topic>Sensitivity</topic><topic>Stratosphere</topic><topic>stratospheric water vapor</topic><topic>Sublimation</topic><topic>Tracking</topic><topic>Transport</topic><topic>Tropopause</topic><topic>Turbulent mixing</topic><topic>Turret</topic><topic>Vertical wind shear</topic><topic>Vortices</topic><topic>Water content</topic><topic>Water vapor</topic><topic>Water vapor content</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Wave breaking</topic><topic>Wind</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Wenjun</creatorcontrib><creatorcontrib>Huang, Qian</creatorcontrib><creatorcontrib>Tian, Wenshou</creatorcontrib><creatorcontrib>Wright, Jonathon S.</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Tian, Hongying</creatorcontrib><creatorcontrib>Luo, Jiali</creatorcontrib><creatorcontrib>Hu, Dingzhu</creatorcontrib><creatorcontrib>Han, Yuanyuan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Wenjun</au><au>Huang, Qian</au><au>Tian, Wenshou</au><au>Wright, Jonathon S.</au><au>Zhang, Jiankai</au><au>Tian, Hongying</au><au>Luo, Jiali</au><au>Hu, Dingzhu</au><au>Han, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-09-27</date><risdate>2018</risdate><volume>123</volume><issue>18</issue><spage>10,023</spage><epage>10,036</epage><pages>10,023-10,036</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection. Key Points Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2017JD028069</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4770-1333</orcidid><orcidid>https://orcid.org/0000-0002-0993-9319</orcidid><orcidid>https://orcid.org/0000-0001-6551-7017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2018-09, Vol.123 (18), p.10,023-10,036
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2123121228
source Wiley Journals; Wiley Free Content; Alma/SFX Local Collection
subjects Computer simulation
Convection
Geophysics
Gravitational waves
Gravity
gravity wave breaking
Gravity waves
Humidity
large eddy model
Lower stratosphere
Moisture content
overshooting convection
Parameterization
Sensitivity
Stratosphere
stratospheric water vapor
Sublimation
Tracking
Transport
Tropopause
Turbulent mixing
Turret
Vertical wind shear
Vortices
Water content
Water vapor
Water vapor content
Water vapor transport
Water vapour
Wave breaking
Wind
Wind shear
title A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Large%20Eddy%20Model%20Study%20on%20the%20Effect%20of%20Overshooting%20Convection%20on%20Lower%20Stratospheric%20Water%20Vapor&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Sang,%20Wenjun&rft.date=2018-09-27&rft.volume=123&rft.issue=18&rft.spage=10,023&rft.epage=10,036&rft.pages=10,023-10,036&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2017JD028069&rft_dat=%3Cproquest_cross%3E2123121228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123121228&rft_id=info:pmid/&rfr_iscdi=true