A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor
Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transp...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2018-09, Vol.123 (18), p.10,023-10,036 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10,036 |
---|---|
container_issue | 18 |
container_start_page | 10,023 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 123 |
creator | Sang, Wenjun Huang, Qian Tian, Wenshou Wright, Jonathon S. Zhang, Jiankai Tian, Hongying Luo, Jiali Hu, Dingzhu Han, Yuanyuan |
description | Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection.
Key Points
Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere
Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause
Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing |
doi_str_mv | 10.1029/2017JD028069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123121228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123121228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKo3f0DAq6tJdrObHEtbq2Wl4PdtySaTdkvd1GTb0n9vpCKeHIaZ4eV5Z2AQuqDkmhImbxihxXREmCC5PEI9RnOZCCnz49-5eD9F5yEsSQxB0oxnPWQGuFR-DnhszB4_OAMr_NRt4uxa3C2ibi3oDjuLZ1vwYeFc17RzPHTtNupNpGKWbgc--rzqXFgvwDcav6kuaq9q7fwZOrFqFeD8p_fRy-34eXiXlLPJ_XBQJjqjVCZcWanr2pJUGgVKpUJo4ISauuaMS12IXNLCSJODBNCWS2KZEjWnCgiPtj66POxde_e5gdBVS7fxbTxZMcpSGgsTkbo6UNq7EDzYau2bD-X3FSXV9yurv6-MeHrAd80K9v-y1XTyOOKZyGT6BZfOdSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123121228</pqid></control><display><type>article</type><title>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</title><source>Wiley Journals</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Sang, Wenjun ; Huang, Qian ; Tian, Wenshou ; Wright, Jonathon S. ; Zhang, Jiankai ; Tian, Hongying ; Luo, Jiali ; Hu, Dingzhu ; Han, Yuanyuan</creator><creatorcontrib>Sang, Wenjun ; Huang, Qian ; Tian, Wenshou ; Wright, Jonathon S. ; Zhang, Jiankai ; Tian, Hongying ; Luo, Jiali ; Hu, Dingzhu ; Han, Yuanyuan</creatorcontrib><description>Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection.
Key Points
Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere
Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause
Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2017JD028069</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Computer simulation ; Convection ; Geophysics ; Gravitational waves ; Gravity ; gravity wave breaking ; Gravity waves ; Humidity ; large eddy model ; Lower stratosphere ; Moisture content ; overshooting convection ; Parameterization ; Sensitivity ; Stratosphere ; stratospheric water vapor ; Sublimation ; Tracking ; Transport ; Tropopause ; Turbulent mixing ; Turret ; Vertical wind shear ; Vortices ; Water content ; Water vapor ; Water vapor content ; Water vapor transport ; Water vapour ; Wave breaking ; Wind ; Wind shear</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-09, Vol.123 (18), p.10,023-10,036</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</citedby><cites>FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</cites><orcidid>0000-0003-4770-1333 ; 0000-0002-0993-9319 ; 0000-0001-6551-7017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2017JD028069$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2017JD028069$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Sang, Wenjun</creatorcontrib><creatorcontrib>Huang, Qian</creatorcontrib><creatorcontrib>Tian, Wenshou</creatorcontrib><creatorcontrib>Wright, Jonathon S.</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Tian, Hongying</creatorcontrib><creatorcontrib>Luo, Jiali</creatorcontrib><creatorcontrib>Hu, Dingzhu</creatorcontrib><creatorcontrib>Han, Yuanyuan</creatorcontrib><title>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</title><title>Journal of geophysical research. Atmospheres</title><description>Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection.
Key Points
Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere
Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause
Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing</description><subject>Computer simulation</subject><subject>Convection</subject><subject>Geophysics</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>gravity wave breaking</subject><subject>Gravity waves</subject><subject>Humidity</subject><subject>large eddy model</subject><subject>Lower stratosphere</subject><subject>Moisture content</subject><subject>overshooting convection</subject><subject>Parameterization</subject><subject>Sensitivity</subject><subject>Stratosphere</subject><subject>stratospheric water vapor</subject><subject>Sublimation</subject><subject>Tracking</subject><subject>Transport</subject><subject>Tropopause</subject><subject>Turbulent mixing</subject><subject>Turret</subject><subject>Vertical wind shear</subject><subject>Vortices</subject><subject>Water content</subject><subject>Water vapor</subject><subject>Water vapor content</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Wave breaking</subject><subject>Wind</subject><subject>Wind shear</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKo3f0DAq6tJdrObHEtbq2Wl4PdtySaTdkvd1GTb0n9vpCKeHIaZ4eV5Z2AQuqDkmhImbxihxXREmCC5PEI9RnOZCCnz49-5eD9F5yEsSQxB0oxnPWQGuFR-DnhszB4_OAMr_NRt4uxa3C2ibi3oDjuLZ1vwYeFc17RzPHTtNupNpGKWbgc--rzqXFgvwDcav6kuaq9q7fwZOrFqFeD8p_fRy-34eXiXlLPJ_XBQJjqjVCZcWanr2pJUGgVKpUJo4ISauuaMS12IXNLCSJODBNCWS2KZEjWnCgiPtj66POxde_e5gdBVS7fxbTxZMcpSGgsTkbo6UNq7EDzYau2bD-X3FSXV9yurv6-MeHrAd80K9v-y1XTyOOKZyGT6BZfOdSs</recordid><startdate>20180927</startdate><enddate>20180927</enddate><creator>Sang, Wenjun</creator><creator>Huang, Qian</creator><creator>Tian, Wenshou</creator><creator>Wright, Jonathon S.</creator><creator>Zhang, Jiankai</creator><creator>Tian, Hongying</creator><creator>Luo, Jiali</creator><creator>Hu, Dingzhu</creator><creator>Han, Yuanyuan</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4770-1333</orcidid><orcidid>https://orcid.org/0000-0002-0993-9319</orcidid><orcidid>https://orcid.org/0000-0001-6551-7017</orcidid></search><sort><creationdate>20180927</creationdate><title>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</title><author>Sang, Wenjun ; Huang, Qian ; Tian, Wenshou ; Wright, Jonathon S. ; Zhang, Jiankai ; Tian, Hongying ; Luo, Jiali ; Hu, Dingzhu ; Han, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-5af9cbbf039daeaa388ce501dbb5259c786917d9d6e9eecf590f2a8b51ae05f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Convection</topic><topic>Geophysics</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>gravity wave breaking</topic><topic>Gravity waves</topic><topic>Humidity</topic><topic>large eddy model</topic><topic>Lower stratosphere</topic><topic>Moisture content</topic><topic>overshooting convection</topic><topic>Parameterization</topic><topic>Sensitivity</topic><topic>Stratosphere</topic><topic>stratospheric water vapor</topic><topic>Sublimation</topic><topic>Tracking</topic><topic>Transport</topic><topic>Tropopause</topic><topic>Turbulent mixing</topic><topic>Turret</topic><topic>Vertical wind shear</topic><topic>Vortices</topic><topic>Water content</topic><topic>Water vapor</topic><topic>Water vapor content</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Wave breaking</topic><topic>Wind</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Wenjun</creatorcontrib><creatorcontrib>Huang, Qian</creatorcontrib><creatorcontrib>Tian, Wenshou</creatorcontrib><creatorcontrib>Wright, Jonathon S.</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Tian, Hongying</creatorcontrib><creatorcontrib>Luo, Jiali</creatorcontrib><creatorcontrib>Hu, Dingzhu</creatorcontrib><creatorcontrib>Han, Yuanyuan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Wenjun</au><au>Huang, Qian</au><au>Tian, Wenshou</au><au>Wright, Jonathon S.</au><au>Zhang, Jiankai</au><au>Tian, Hongying</au><au>Luo, Jiali</au><au>Hu, Dingzhu</au><au>Han, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-09-27</date><risdate>2018</risdate><volume>123</volume><issue>18</issue><spage>10,023</spage><epage>10,036</epage><pages>10,023-10,036</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Using a cloud‐resolving large eddy model (LEM), we investigate how overshooting convection affects the water vapor content in the lower stratosphere. We design and conduct a series of sensitivity experiments to diagnose the effects of dynamical and thermodynamical background conditions on the transport of water vapor into the lower stratosphere associated with overshooting convection. The three‐dimensional LEM simulations capture the bulk properties of the target case and track microphysical processes using a three‐phase microphysical parameterization. The model results indicate that the net effect of overshooting convection on lower stratospheric water content is moistening, primarily due to gravity wave breaking and ice sublimation. The contributions of small‐scale turbulent mixing to water vapor transport from the overshooting turret into the stratosphere are relatively weak. Sensitivity experiments show that convective intensity (as measured by updraft velocity) is directly related to the effect of overshooting convection on lower stratospheric humidity. This impact is quantified for the idealized target case. Changes in vertical wind shear near the tropopause have no significant impact on the extent of overshooting but have important impacts on cross‐tropopause water vapor exchange via their modulation of gravity wave breaking. Larger vertical wind shear in the tropopause layer inhibits the transport of water vapor and ice into the lower stratosphere by overshooting convection.
Key Points
Idealized simulations of overshooting tropical convection indicate net moistening of the lower stratosphere
Stratospheric moistening results from ice sublimation and gravity wave breaking near the tropopause
Effects of near‐tropopause vertical wind shear are mainly through modulation of gravity wave breaking rather than turbulent mixing</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2017JD028069</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4770-1333</orcidid><orcidid>https://orcid.org/0000-0002-0993-9319</orcidid><orcidid>https://orcid.org/0000-0001-6551-7017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2018-09, Vol.123 (18), p.10,023-10,036 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_2123121228 |
source | Wiley Journals; Wiley Free Content; Alma/SFX Local Collection |
subjects | Computer simulation Convection Geophysics Gravitational waves Gravity gravity wave breaking Gravity waves Humidity large eddy model Lower stratosphere Moisture content overshooting convection Parameterization Sensitivity Stratosphere stratospheric water vapor Sublimation Tracking Transport Tropopause Turbulent mixing Turret Vertical wind shear Vortices Water content Water vapor Water vapor content Water vapor transport Water vapour Wave breaking Wind Wind shear |
title | A Large Eddy Model Study on the Effect of Overshooting Convection on Lower Stratospheric Water Vapor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Large%20Eddy%20Model%20Study%20on%20the%20Effect%20of%20Overshooting%20Convection%20on%20Lower%20Stratospheric%20Water%20Vapor&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Sang,%20Wenjun&rft.date=2018-09-27&rft.volume=123&rft.issue=18&rft.spage=10,023&rft.epage=10,036&rft.pages=10,023-10,036&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2017JD028069&rft_dat=%3Cproquest_cross%3E2123121228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123121228&rft_id=info:pmid/&rfr_iscdi=true |