Modeling Online Browsing and Path Analysis Using Clickstream Data
Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online booksel...
Gespeichert in:
Veröffentlicht in: | Marketing science (Providence, R.I.) R.I.), 2004-10, Vol.23 (4), p.579-595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 595 |
---|---|
container_issue | 4 |
container_start_page | 579 |
container_title | Marketing science (Providence, R.I.) |
container_volume | 23 |
creator | Montgomery, Alan L Li, Shibo Srinivasan, Kannan Liechty, John C |
description | Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path. |
doi_str_mv | 10.1287/mksc.1040.0073 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_212288093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A126388228</galeid><jstor_id>30036690</jstor_id><sourcerecordid>A126388228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</originalsourceid><addsrcrecordid>eNqFkcuP0zAQxiMEEmXhyg0p4sABKcWPxI9jKW8tWg6sxM1ynUnrNomLnbLqf894gxYJIZBlf_bo941mPEXxlJIlZUq-Gg7JLSmpyZIQye8VC9owUTW1-na_WGCEVYxr_bB4lNKeIMKIWhSrz6GF3o_b8mpEgfJ1DDcpv-3Yll_stCtXo-3Pyafy-ja-7r07pCmCHco3drKPiwed7RM8-aUXxfW7t1_XH6rLq_cf16vLygnJp0o7KgRtuRRMEdJQrjTZtJq0gnZyA6DERmupRWslgO5Ag62llJ1sats2VPGL4sWc9xjD9xOkyQw-Oeh7O0I4JcMVoYzWAsHnf4D7cIrYRDKMMqYU0Ryhaoa2tgfjxy5M0botjBBtH0boPIZXlAmuFHqQX_6Fx9XC4N2_DC6GlCJ05hj9YOPZUGLyvEyel8nzMnleaPg0GyIcwd3RfhxCvEV_GG4Zx-OcL4TUKB531iPuRmrT6MbspgGTPZuT7dMU4l0yTggXQpPf7edO4pD-X9zLmd_57e7Gx_kLshFdB5iS8wZrqw0WwX8CmYPHJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212288093</pqid></control><display><type>article</type><title>Modeling Online Browsing and Path Analysis Using Clickstream Data</title><source>Jstor Complete Legacy</source><source>Informs</source><source>RePEc</source><source>EBSCOhost Business Source Complete</source><creator>Montgomery, Alan L ; Li, Shibo ; Srinivasan, Kannan ; Liechty, John C</creator><creatorcontrib>Montgomery, Alan L ; Li, Shibo ; Srinivasan, Kannan ; Liechty, John C</creatorcontrib><description>Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.1040.0073</identifier><identifier>CODEN: MARSE5</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Autoregression (Statistics) ; Bayesian method ; Bookstores ; Computers ; Consumer behavior ; Customization ; Data analysis ; Data collection ; Electronic mail systems ; hidden Markov chain models ; hierarchical Bayes models ; Home pages ; Hyperlinks ; Information search and retrieval ; Internet ; Internet service providers ; Marketing ; Markov models ; Markov processes ; Markovian processes ; Mathematical models ; Modeling ; Monte Carlo simulation ; multinomial probit model ; Personal computers ; personalization ; Servers ; Shopping ; Stock conversion ratios ; Studies ; Vector autoregression ; vector autoregressive models ; Websites</subject><ispartof>Marketing science (Providence, R.I.), 2004-10, Vol.23 (4), p.579-595</ispartof><rights>Copyright 2004 INFORMS</rights><rights>COPYRIGHT 2004 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Fall 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</citedby><cites>FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30036690$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.1040.0073$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,3994,27901,27902,57992,58225,62589</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormksc/v_3a23_3ay_3a2004_3ai_3a4_3ap_3a579-595.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Li, Shibo</creatorcontrib><creatorcontrib>Srinivasan, Kannan</creatorcontrib><creatorcontrib>Liechty, John C</creatorcontrib><title>Modeling Online Browsing and Path Analysis Using Clickstream Data</title><title>Marketing science (Providence, R.I.)</title><description>Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.</description><subject>Analysis</subject><subject>Autoregression (Statistics)</subject><subject>Bayesian method</subject><subject>Bookstores</subject><subject>Computers</subject><subject>Consumer behavior</subject><subject>Customization</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Electronic mail systems</subject><subject>hidden Markov chain models</subject><subject>hierarchical Bayes models</subject><subject>Home pages</subject><subject>Hyperlinks</subject><subject>Information search and retrieval</subject><subject>Internet</subject><subject>Internet service providers</subject><subject>Marketing</subject><subject>Markov models</subject><subject>Markov processes</subject><subject>Markovian processes</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>multinomial probit model</subject><subject>Personal computers</subject><subject>personalization</subject><subject>Servers</subject><subject>Shopping</subject><subject>Stock conversion ratios</subject><subject>Studies</subject><subject>Vector autoregression</subject><subject>vector autoregressive models</subject><subject>Websites</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcuP0zAQxiMEEmXhyg0p4sABKcWPxI9jKW8tWg6sxM1ynUnrNomLnbLqf894gxYJIZBlf_bo941mPEXxlJIlZUq-Gg7JLSmpyZIQye8VC9owUTW1-na_WGCEVYxr_bB4lNKeIMKIWhSrz6GF3o_b8mpEgfJ1DDcpv-3Yll_stCtXo-3Pyafy-ja-7r07pCmCHco3drKPiwed7RM8-aUXxfW7t1_XH6rLq_cf16vLygnJp0o7KgRtuRRMEdJQrjTZtJq0gnZyA6DERmupRWslgO5Ag62llJ1sats2VPGL4sWc9xjD9xOkyQw-Oeh7O0I4JcMVoYzWAsHnf4D7cIrYRDKMMqYU0Ryhaoa2tgfjxy5M0botjBBtH0boPIZXlAmuFHqQX_6Fx9XC4N2_DC6GlCJ05hj9YOPZUGLyvEyel8nzMnleaPg0GyIcwd3RfhxCvEV_GG4Zx-OcL4TUKB531iPuRmrT6MbspgGTPZuT7dMU4l0yTggXQpPf7edO4pD-X9zLmd_57e7Gx_kLshFdB5iS8wZrqw0WwX8CmYPHJQ</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Montgomery, Alan L</creator><creator>Li, Shibo</creator><creator>Srinivasan, Kannan</creator><creator>Liechty, John C</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2M</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20041001</creationdate><title>Modeling Online Browsing and Path Analysis Using Clickstream Data</title><author>Montgomery, Alan L ; Li, Shibo ; Srinivasan, Kannan ; Liechty, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis</topic><topic>Autoregression (Statistics)</topic><topic>Bayesian method</topic><topic>Bookstores</topic><topic>Computers</topic><topic>Consumer behavior</topic><topic>Customization</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Electronic mail systems</topic><topic>hidden Markov chain models</topic><topic>hierarchical Bayes models</topic><topic>Home pages</topic><topic>Hyperlinks</topic><topic>Information search and retrieval</topic><topic>Internet</topic><topic>Internet service providers</topic><topic>Marketing</topic><topic>Markov models</topic><topic>Markov processes</topic><topic>Markovian processes</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>multinomial probit model</topic><topic>Personal computers</topic><topic>personalization</topic><topic>Servers</topic><topic>Shopping</topic><topic>Stock conversion ratios</topic><topic>Studies</topic><topic>Vector autoregression</topic><topic>vector autoregressive models</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Li, Shibo</creatorcontrib><creatorcontrib>Srinivasan, Kannan</creatorcontrib><creatorcontrib>Liechty, John C</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Psychology Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Alan L</au><au>Li, Shibo</au><au>Srinivasan, Kannan</au><au>Liechty, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Online Browsing and Path Analysis Using Clickstream Data</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>23</volume><issue>4</issue><spage>579</spage><epage>595</epage><pages>579-595</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><coden>MARSE5</coden><abstract>Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.1040.0073</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0732-2399 |
ispartof | Marketing science (Providence, R.I.), 2004-10, Vol.23 (4), p.579-595 |
issn | 0732-2399 1526-548X |
language | eng |
recordid | cdi_proquest_journals_212288093 |
source | Jstor Complete Legacy; Informs; RePEc; EBSCOhost Business Source Complete |
subjects | Analysis Autoregression (Statistics) Bayesian method Bookstores Computers Consumer behavior Customization Data analysis Data collection Electronic mail systems hidden Markov chain models hierarchical Bayes models Home pages Hyperlinks Information search and retrieval Internet Internet service providers Marketing Markov models Markov processes Markovian processes Mathematical models Modeling Monte Carlo simulation multinomial probit model Personal computers personalization Servers Shopping Stock conversion ratios Studies Vector autoregression vector autoregressive models Websites |
title | Modeling Online Browsing and Path Analysis Using Clickstream Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Online%20Browsing%20and%20Path%20Analysis%20Using%20Clickstream%20Data&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=Montgomery,%20Alan%20L&rft.date=2004-10-01&rft.volume=23&rft.issue=4&rft.spage=579&rft.epage=595&rft.pages=579-595&rft.issn=0732-2399&rft.eissn=1526-548X&rft.coden=MARSE5&rft_id=info:doi/10.1287/mksc.1040.0073&rft_dat=%3Cgale_proqu%3EA126388228%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212288093&rft_id=info:pmid/&rft_galeid=A126388228&rft_jstor_id=30036690&rfr_iscdi=true |