Modeling Online Browsing and Path Analysis Using Clickstream Data

Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online booksel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marketing science (Providence, R.I.) R.I.), 2004-10, Vol.23 (4), p.579-595
Hauptverfasser: Montgomery, Alan L, Li, Shibo, Srinivasan, Kannan, Liechty, John C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 4
container_start_page 579
container_title Marketing science (Providence, R.I.)
container_volume 23
creator Montgomery, Alan L
Li, Shibo
Srinivasan, Kannan
Liechty, John C
description Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.
doi_str_mv 10.1287/mksc.1040.0073
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_212288093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A126388228</galeid><jstor_id>30036690</jstor_id><sourcerecordid>A126388228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</originalsourceid><addsrcrecordid>eNqFkcuP0zAQxiMEEmXhyg0p4sABKcWPxI9jKW8tWg6sxM1ynUnrNomLnbLqf894gxYJIZBlf_bo941mPEXxlJIlZUq-Gg7JLSmpyZIQye8VC9owUTW1-na_WGCEVYxr_bB4lNKeIMKIWhSrz6GF3o_b8mpEgfJ1DDcpv-3Yll_stCtXo-3Pyafy-ja-7r07pCmCHco3drKPiwed7RM8-aUXxfW7t1_XH6rLq_cf16vLygnJp0o7KgRtuRRMEdJQrjTZtJq0gnZyA6DERmupRWslgO5Ag62llJ1sats2VPGL4sWc9xjD9xOkyQw-Oeh7O0I4JcMVoYzWAsHnf4D7cIrYRDKMMqYU0Ryhaoa2tgfjxy5M0botjBBtH0boPIZXlAmuFHqQX_6Fx9XC4N2_DC6GlCJ05hj9YOPZUGLyvEyel8nzMnleaPg0GyIcwd3RfhxCvEV_GG4Zx-OcL4TUKB531iPuRmrT6MbspgGTPZuT7dMU4l0yTggXQpPf7edO4pD-X9zLmd_57e7Gx_kLshFdB5iS8wZrqw0WwX8CmYPHJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212288093</pqid></control><display><type>article</type><title>Modeling Online Browsing and Path Analysis Using Clickstream Data</title><source>Jstor Complete Legacy</source><source>Informs</source><source>RePEc</source><source>EBSCOhost Business Source Complete</source><creator>Montgomery, Alan L ; Li, Shibo ; Srinivasan, Kannan ; Liechty, John C</creator><creatorcontrib>Montgomery, Alan L ; Li, Shibo ; Srinivasan, Kannan ; Liechty, John C</creatorcontrib><description>Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.1040.0073</identifier><identifier>CODEN: MARSE5</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Autoregression (Statistics) ; Bayesian method ; Bookstores ; Computers ; Consumer behavior ; Customization ; Data analysis ; Data collection ; Electronic mail systems ; hidden Markov chain models ; hierarchical Bayes models ; Home pages ; Hyperlinks ; Information search and retrieval ; Internet ; Internet service providers ; Marketing ; Markov models ; Markov processes ; Markovian processes ; Mathematical models ; Modeling ; Monte Carlo simulation ; multinomial probit model ; Personal computers ; personalization ; Servers ; Shopping ; Stock conversion ratios ; Studies ; Vector autoregression ; vector autoregressive models ; Websites</subject><ispartof>Marketing science (Providence, R.I.), 2004-10, Vol.23 (4), p.579-595</ispartof><rights>Copyright 2004 INFORMS</rights><rights>COPYRIGHT 2004 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Fall 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</citedby><cites>FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30036690$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.1040.0073$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,3994,27901,27902,57992,58225,62589</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormksc/v_3a23_3ay_3a2004_3ai_3a4_3ap_3a579-595.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Li, Shibo</creatorcontrib><creatorcontrib>Srinivasan, Kannan</creatorcontrib><creatorcontrib>Liechty, John C</creatorcontrib><title>Modeling Online Browsing and Path Analysis Using Clickstream Data</title><title>Marketing science (Providence, R.I.)</title><description>Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.</description><subject>Analysis</subject><subject>Autoregression (Statistics)</subject><subject>Bayesian method</subject><subject>Bookstores</subject><subject>Computers</subject><subject>Consumer behavior</subject><subject>Customization</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Electronic mail systems</subject><subject>hidden Markov chain models</subject><subject>hierarchical Bayes models</subject><subject>Home pages</subject><subject>Hyperlinks</subject><subject>Information search and retrieval</subject><subject>Internet</subject><subject>Internet service providers</subject><subject>Marketing</subject><subject>Markov models</subject><subject>Markov processes</subject><subject>Markovian processes</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>multinomial probit model</subject><subject>Personal computers</subject><subject>personalization</subject><subject>Servers</subject><subject>Shopping</subject><subject>Stock conversion ratios</subject><subject>Studies</subject><subject>Vector autoregression</subject><subject>vector autoregressive models</subject><subject>Websites</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcuP0zAQxiMEEmXhyg0p4sABKcWPxI9jKW8tWg6sxM1ynUnrNomLnbLqf894gxYJIZBlf_bo941mPEXxlJIlZUq-Gg7JLSmpyZIQye8VC9owUTW1-na_WGCEVYxr_bB4lNKeIMKIWhSrz6GF3o_b8mpEgfJ1DDcpv-3Yll_stCtXo-3Pyafy-ja-7r07pCmCHco3drKPiwed7RM8-aUXxfW7t1_XH6rLq_cf16vLygnJp0o7KgRtuRRMEdJQrjTZtJq0gnZyA6DERmupRWslgO5Ag62llJ1sats2VPGL4sWc9xjD9xOkyQw-Oeh7O0I4JcMVoYzWAsHnf4D7cIrYRDKMMqYU0Ryhaoa2tgfjxy5M0botjBBtH0boPIZXlAmuFHqQX_6Fx9XC4N2_DC6GlCJ05hj9YOPZUGLyvEyel8nzMnleaPg0GyIcwd3RfhxCvEV_GG4Zx-OcL4TUKB531iPuRmrT6MbspgGTPZuT7dMU4l0yTggXQpPf7edO4pD-X9zLmd_57e7Gx_kLshFdB5iS8wZrqw0WwX8CmYPHJQ</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Montgomery, Alan L</creator><creator>Li, Shibo</creator><creator>Srinivasan, Kannan</creator><creator>Liechty, John C</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2M</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20041001</creationdate><title>Modeling Online Browsing and Path Analysis Using Clickstream Data</title><author>Montgomery, Alan L ; Li, Shibo ; Srinivasan, Kannan ; Liechty, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-9c1661d3762800513890bd90d61f7bee86b99796da7ee9fe9ea4777f754ad5183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis</topic><topic>Autoregression (Statistics)</topic><topic>Bayesian method</topic><topic>Bookstores</topic><topic>Computers</topic><topic>Consumer behavior</topic><topic>Customization</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Electronic mail systems</topic><topic>hidden Markov chain models</topic><topic>hierarchical Bayes models</topic><topic>Home pages</topic><topic>Hyperlinks</topic><topic>Information search and retrieval</topic><topic>Internet</topic><topic>Internet service providers</topic><topic>Marketing</topic><topic>Markov models</topic><topic>Markov processes</topic><topic>Markovian processes</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>multinomial probit model</topic><topic>Personal computers</topic><topic>personalization</topic><topic>Servers</topic><topic>Shopping</topic><topic>Stock conversion ratios</topic><topic>Studies</topic><topic>Vector autoregression</topic><topic>vector autoregressive models</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Li, Shibo</creatorcontrib><creatorcontrib>Srinivasan, Kannan</creatorcontrib><creatorcontrib>Liechty, John C</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Psychology Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Alan L</au><au>Li, Shibo</au><au>Srinivasan, Kannan</au><au>Liechty, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Online Browsing and Path Analysis Using Clickstream Data</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>23</volume><issue>4</issue><spage>579</spage><epage>595</epage><pages>579-595</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><coden>MARSE5</coden><abstract>Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.1040.0073</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0732-2399
ispartof Marketing science (Providence, R.I.), 2004-10, Vol.23 (4), p.579-595
issn 0732-2399
1526-548X
language eng
recordid cdi_proquest_journals_212288093
source Jstor Complete Legacy; Informs; RePEc; EBSCOhost Business Source Complete
subjects Analysis
Autoregression (Statistics)
Bayesian method
Bookstores
Computers
Consumer behavior
Customization
Data analysis
Data collection
Electronic mail systems
hidden Markov chain models
hierarchical Bayes models
Home pages
Hyperlinks
Information search and retrieval
Internet
Internet service providers
Marketing
Markov models
Markov processes
Markovian processes
Mathematical models
Modeling
Monte Carlo simulation
multinomial probit model
Personal computers
personalization
Servers
Shopping
Stock conversion ratios
Studies
Vector autoregression
vector autoregressive models
Websites
title Modeling Online Browsing and Path Analysis Using Clickstream Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Online%20Browsing%20and%20Path%20Analysis%20Using%20Clickstream%20Data&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=Montgomery,%20Alan%20L&rft.date=2004-10-01&rft.volume=23&rft.issue=4&rft.spage=579&rft.epage=595&rft.pages=579-595&rft.issn=0732-2399&rft.eissn=1526-548X&rft.coden=MARSE5&rft_id=info:doi/10.1287/mksc.1040.0073&rft_dat=%3Cgale_proqu%3EA126388228%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212288093&rft_id=info:pmid/&rft_galeid=A126388228&rft_jstor_id=30036690&rfr_iscdi=true