Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach

Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2018-11, Vol.37 (11), p.2881-2893
Hauptverfasser: Jayakodi, Nitthilan Kannappan, Chatterjee, Anwesha, Choi, Wonje, Doppa, Janardhan Rao, Pande, Partha Pratim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2893
container_issue 11
container_start_page 2881
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 37
creator Jayakodi, Nitthilan Kannappan
Chatterjee, Anwesha
Choi, Wonje
Doppa, Janardhan Rao
Pande, Partha Pratim
description Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.
doi_str_mv 10.1109/TCAD.2018.2857338
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121954154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412559</ieee_id><sourcerecordid>2121954154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqXwAxCLJWYXfyYOW5QWqFSpA2VisBz7paSiTrDbIf-eVEVMbzn33qeD0D2jM8Zo8bSpyvmMU6ZnXKtcCH2BJqwQOZFMsUs0oTzXhNKcXqOblHaUMql4MUGfm2h9G7Zk3TS4dO4YrRuwDR4vAsTtgLsGzwF6vAwNRAgOcBfwYl-D9-Dx-5AOsE_PuMRVR-aQ2m3AZd_HzrqvW3TV2O8Ed393ij5eFpvqjazWr8uqXBEnRHYgmWXc87oQui6YysFJyZ1rBHc8U7JW3os6c0Jn1lE1_u04z4QAmUvNczqCU_R47h1nf46QDmbXHWMYJw1nnBVqdCBHip0pF7uUIjSmj-3exsEwak4OzcmhOTk0fw7HzMM50wLAP68l40oV4hcif2rO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121954154</pqid></control><display><type>article</type><title>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Jayakodi, Nitthilan Kannappan ; Chatterjee, Anwesha ; Choi, Wonje ; Doppa, Janardhan Rao ; Pande, Partha Pratim</creator><creatorcontrib>Jayakodi, Nitthilan Kannappan ; Chatterjee, Anwesha ; Choi, Wonje ; Doppa, Janardhan Rao ; Pande, Partha Pratim</creatorcontrib><description>Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2018.2857338</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Approximate computing ; Artificial neural networks ; Bayes methods ; Bayesian optimization (BO) ; Classifiers ; Co-design ; Complexity ; Computational modeling ; Computer architecture ; Convolution ; Deep learning ; deep neural networks (DNNs) ; Embedded systems ; Energy consumption ; Hardware ; hardware and software co-design ; Hardware design languages ; Image classification ; Inference ; Neural networks ; Optimization ; Software design ; Task analysis</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2018-11, Vol.37 (11), p.2881-2893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</citedby><cites>FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</cites><orcidid>0000-0002-5930-8531 ; 0000-0002-9715-393X ; 0000-0002-3848-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8412559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jayakodi, Nitthilan Kannappan</creatorcontrib><creatorcontrib>Chatterjee, Anwesha</creatorcontrib><creatorcontrib>Choi, Wonje</creatorcontrib><creatorcontrib>Doppa, Janardhan Rao</creatorcontrib><creatorcontrib>Pande, Partha Pratim</creatorcontrib><title>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.</description><subject>Accuracy</subject><subject>Approximate computing</subject><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayesian optimization (BO)</subject><subject>Classifiers</subject><subject>Co-design</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>deep neural networks (DNNs)</subject><subject>Embedded systems</subject><subject>Energy consumption</subject><subject>Hardware</subject><subject>hardware and software co-design</subject><subject>Hardware design languages</subject><subject>Image classification</subject><subject>Inference</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Software design</subject><subject>Task analysis</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAURS0EEqXwAxCLJWYXfyYOW5QWqFSpA2VisBz7paSiTrDbIf-eVEVMbzn33qeD0D2jM8Zo8bSpyvmMU6ZnXKtcCH2BJqwQOZFMsUs0oTzXhNKcXqOblHaUMql4MUGfm2h9G7Zk3TS4dO4YrRuwDR4vAsTtgLsGzwF6vAwNRAgOcBfwYl-D9-Dx-5AOsE_PuMRVR-aQ2m3AZd_HzrqvW3TV2O8Ed393ij5eFpvqjazWr8uqXBEnRHYgmWXc87oQui6YysFJyZ1rBHc8U7JW3os6c0Jn1lE1_u04z4QAmUvNczqCU_R47h1nf46QDmbXHWMYJw1nnBVqdCBHip0pF7uUIjSmj-3exsEwak4OzcmhOTk0fw7HzMM50wLAP68l40oV4hcif2rO</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jayakodi, Nitthilan Kannappan</creator><creator>Chatterjee, Anwesha</creator><creator>Choi, Wonje</creator><creator>Doppa, Janardhan Rao</creator><creator>Pande, Partha Pratim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5930-8531</orcidid><orcidid>https://orcid.org/0000-0002-9715-393X</orcidid><orcidid>https://orcid.org/0000-0002-3848-5301</orcidid></search><sort><creationdate>20181101</creationdate><title>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</title><author>Jayakodi, Nitthilan Kannappan ; Chatterjee, Anwesha ; Choi, Wonje ; Doppa, Janardhan Rao ; Pande, Partha Pratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Approximate computing</topic><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayesian optimization (BO)</topic><topic>Classifiers</topic><topic>Co-design</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>deep neural networks (DNNs)</topic><topic>Embedded systems</topic><topic>Energy consumption</topic><topic>Hardware</topic><topic>hardware and software co-design</topic><topic>Hardware design languages</topic><topic>Image classification</topic><topic>Inference</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Software design</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayakodi, Nitthilan Kannappan</creatorcontrib><creatorcontrib>Chatterjee, Anwesha</creatorcontrib><creatorcontrib>Choi, Wonje</creatorcontrib><creatorcontrib>Doppa, Janardhan Rao</creatorcontrib><creatorcontrib>Pande, Partha Pratim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jayakodi, Nitthilan Kannappan</au><au>Chatterjee, Anwesha</au><au>Choi, Wonje</au><au>Doppa, Janardhan Rao</au><au>Pande, Partha Pratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>37</volume><issue>11</issue><spage>2881</spage><epage>2893</epage><pages>2881-2893</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2018.2857338</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5930-8531</orcidid><orcidid>https://orcid.org/0000-0002-9715-393X</orcidid><orcidid>https://orcid.org/0000-0002-3848-5301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2018-11, Vol.37 (11), p.2881-2893
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_2121954154
source IEEE Electronic Library (IEL)
subjects Accuracy
Approximate computing
Artificial neural networks
Bayes methods
Bayesian optimization (BO)
Classifiers
Co-design
Complexity
Computational modeling
Computer architecture
Convolution
Deep learning
deep neural networks (DNNs)
Embedded systems
Energy consumption
Hardware
hardware and software co-design
Hardware design languages
Image classification
Inference
Neural networks
Optimization
Software design
Task analysis
title Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trading-Off%20Accuracy%20and%20Energy%20of%20Deep%20Inference%20on%20Embedded%20Systems:%20A%20Co-Design%20Approach&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Jayakodi,%20Nitthilan%20Kannappan&rft.date=2018-11-01&rft.volume=37&rft.issue=11&rft.spage=2881&rft.epage=2893&rft.pages=2881-2893&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2018.2857338&rft_dat=%3Cproquest_RIE%3E2121954154%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121954154&rft_id=info:pmid/&rft_ieee_id=8412559&rfr_iscdi=true