Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach
Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems pos...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2018-11, Vol.37 (11), p.2881-2893 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2893 |
---|---|
container_issue | 11 |
container_start_page | 2881 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 37 |
creator | Jayakodi, Nitthilan Kannappan Chatterjee, Anwesha Choi, Wonje Doppa, Janardhan Rao Pande, Partha Pratim |
description | Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net. |
doi_str_mv | 10.1109/TCAD.2018.2857338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121954154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412559</ieee_id><sourcerecordid>2121954154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqXwAxCLJWYXfyYOW5QWqFSpA2VisBz7paSiTrDbIf-eVEVMbzn33qeD0D2jM8Zo8bSpyvmMU6ZnXKtcCH2BJqwQOZFMsUs0oTzXhNKcXqOblHaUMql4MUGfm2h9G7Zk3TS4dO4YrRuwDR4vAsTtgLsGzwF6vAwNRAgOcBfwYl-D9-Dx-5AOsE_PuMRVR-aQ2m3AZd_HzrqvW3TV2O8Ed393ij5eFpvqjazWr8uqXBEnRHYgmWXc87oQui6YysFJyZ1rBHc8U7JW3os6c0Jn1lE1_u04z4QAmUvNczqCU_R47h1nf46QDmbXHWMYJw1nnBVqdCBHip0pF7uUIjSmj-3exsEwak4OzcmhOTk0fw7HzMM50wLAP68l40oV4hcif2rO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121954154</pqid></control><display><type>article</type><title>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Jayakodi, Nitthilan Kannappan ; Chatterjee, Anwesha ; Choi, Wonje ; Doppa, Janardhan Rao ; Pande, Partha Pratim</creator><creatorcontrib>Jayakodi, Nitthilan Kannappan ; Chatterjee, Anwesha ; Choi, Wonje ; Doppa, Janardhan Rao ; Pande, Partha Pratim</creatorcontrib><description>Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2018.2857338</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Approximate computing ; Artificial neural networks ; Bayes methods ; Bayesian optimization (BO) ; Classifiers ; Co-design ; Complexity ; Computational modeling ; Computer architecture ; Convolution ; Deep learning ; deep neural networks (DNNs) ; Embedded systems ; Energy consumption ; Hardware ; hardware and software co-design ; Hardware design languages ; Image classification ; Inference ; Neural networks ; Optimization ; Software design ; Task analysis</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2018-11, Vol.37 (11), p.2881-2893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</citedby><cites>FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</cites><orcidid>0000-0002-5930-8531 ; 0000-0002-9715-393X ; 0000-0002-3848-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8412559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jayakodi, Nitthilan Kannappan</creatorcontrib><creatorcontrib>Chatterjee, Anwesha</creatorcontrib><creatorcontrib>Choi, Wonje</creatorcontrib><creatorcontrib>Doppa, Janardhan Rao</creatorcontrib><creatorcontrib>Pande, Partha Pratim</creatorcontrib><title>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.</description><subject>Accuracy</subject><subject>Approximate computing</subject><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayesian optimization (BO)</subject><subject>Classifiers</subject><subject>Co-design</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>deep neural networks (DNNs)</subject><subject>Embedded systems</subject><subject>Energy consumption</subject><subject>Hardware</subject><subject>hardware and software co-design</subject><subject>Hardware design languages</subject><subject>Image classification</subject><subject>Inference</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Software design</subject><subject>Task analysis</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAURS0EEqXwAxCLJWYXfyYOW5QWqFSpA2VisBz7paSiTrDbIf-eVEVMbzn33qeD0D2jM8Zo8bSpyvmMU6ZnXKtcCH2BJqwQOZFMsUs0oTzXhNKcXqOblHaUMql4MUGfm2h9G7Zk3TS4dO4YrRuwDR4vAsTtgLsGzwF6vAwNRAgOcBfwYl-D9-Dx-5AOsE_PuMRVR-aQ2m3AZd_HzrqvW3TV2O8Ed393ij5eFpvqjazWr8uqXBEnRHYgmWXc87oQui6YysFJyZ1rBHc8U7JW3os6c0Jn1lE1_u04z4QAmUvNczqCU_R47h1nf46QDmbXHWMYJw1nnBVqdCBHip0pF7uUIjSmj-3exsEwak4OzcmhOTk0fw7HzMM50wLAP68l40oV4hcif2rO</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jayakodi, Nitthilan Kannappan</creator><creator>Chatterjee, Anwesha</creator><creator>Choi, Wonje</creator><creator>Doppa, Janardhan Rao</creator><creator>Pande, Partha Pratim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5930-8531</orcidid><orcidid>https://orcid.org/0000-0002-9715-393X</orcidid><orcidid>https://orcid.org/0000-0002-3848-5301</orcidid></search><sort><creationdate>20181101</creationdate><title>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</title><author>Jayakodi, Nitthilan Kannappan ; Chatterjee, Anwesha ; Choi, Wonje ; Doppa, Janardhan Rao ; Pande, Partha Pratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-6a12d2b938b9157ec442ccf32c2654b5dd3b6c386ac05014c22633e4748270cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Approximate computing</topic><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayesian optimization (BO)</topic><topic>Classifiers</topic><topic>Co-design</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>deep neural networks (DNNs)</topic><topic>Embedded systems</topic><topic>Energy consumption</topic><topic>Hardware</topic><topic>hardware and software co-design</topic><topic>Hardware design languages</topic><topic>Image classification</topic><topic>Inference</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Software design</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayakodi, Nitthilan Kannappan</creatorcontrib><creatorcontrib>Chatterjee, Anwesha</creatorcontrib><creatorcontrib>Choi, Wonje</creatorcontrib><creatorcontrib>Doppa, Janardhan Rao</creatorcontrib><creatorcontrib>Pande, Partha Pratim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jayakodi, Nitthilan Kannappan</au><au>Chatterjee, Anwesha</au><au>Choi, Wonje</au><au>Doppa, Janardhan Rao</au><au>Pande, Partha Pratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>37</volume><issue>11</issue><spage>2881</spage><epage>2893</epage><pages>2881-2893</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred as coarse-to-fine networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified tradeoff between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the energy delay product by 27% to 60% with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2018.2857338</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5930-8531</orcidid><orcidid>https://orcid.org/0000-0002-9715-393X</orcidid><orcidid>https://orcid.org/0000-0002-3848-5301</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2018-11, Vol.37 (11), p.2881-2893 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_journals_2121954154 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Approximate computing Artificial neural networks Bayes methods Bayesian optimization (BO) Classifiers Co-design Complexity Computational modeling Computer architecture Convolution Deep learning deep neural networks (DNNs) Embedded systems Energy consumption Hardware hardware and software co-design Hardware design languages Image classification Inference Neural networks Optimization Software design Task analysis |
title | Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trading-Off%20Accuracy%20and%20Energy%20of%20Deep%20Inference%20on%20Embedded%20Systems:%20A%20Co-Design%20Approach&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Jayakodi,%20Nitthilan%20Kannappan&rft.date=2018-11-01&rft.volume=37&rft.issue=11&rft.spage=2881&rft.epage=2893&rft.pages=2881-2893&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2018.2857338&rft_dat=%3Cproquest_RIE%3E2121954154%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121954154&rft_id=info:pmid/&rft_ieee_id=8412559&rfr_iscdi=true |