Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density
Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drive...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2018-11, Vol.54 (11), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 54 |
creator | Kubota, Yukiko Peng, Yingguo Ding, Yinfeng Chang, Eric K. C. Gao, Li Zavaliche, Florin Klemmer, Timothy J. Zhu, Sha Zhu, Xiaobin Huang, Pin-Wei Wu, Alexander Q. Amini, Hassib Granz, Steven Rausch, Tim Rea, Chris J. Qiu, Jiaoming Yin, Huaqing Seigler, Mike A. Chen, Yonghua Ju, Ganping Thiele, Jan-Ulrich |
description | Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient >10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling. |
doi_str_mv | 10.1109/TMAG.2018.2851973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121943683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8438518</ieee_id><sourcerecordid>2121943683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPHjamkmyHzkuWluhRZR6Dtnd2ZpSd2uSgv33ZmnxNAzvMzPMQ8gtsAkAU4-rZTmbcAbFhBcpqFyckREoCQljmTonIxajRMlMXpIr7zexlSmwEXmfowlJ6b31ARu6NOsOg63pB9a9a2y3fvB0-huw87ayWxsONPR0btdfdGE7NI6arqGlQ7OlzwMUDtfkojVbjzenOiafL9PV0zxZvM1en8pFUkuWh4RDbSCteK2MNLWoQLE8ZdjkXMq2VZzFuMiYwhYzySBrG1MVnPEalMiFYmJM7o97d67_2aMPetPvXRdPag48_i6yQkQKjlTteu8dtnrn7LdxBw1MD-b0YE4P5vTJXJy5O85YRPznCyliXog_qu1ong</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121943683</pqid></control><display><type>article</type><title>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</title><source>IEEE Electronic Library (IEL)</source><creator>Kubota, Yukiko ; Peng, Yingguo ; Ding, Yinfeng ; Chang, Eric K. C. ; Gao, Li ; Zavaliche, Florin ; Klemmer, Timothy J. ; Zhu, Sha ; Zhu, Xiaobin ; Huang, Pin-Wei ; Wu, Alexander Q. ; Amini, Hassib ; Granz, Steven ; Rausch, Tim ; Rea, Chris J. ; Qiu, Jiaoming ; Yin, Huaqing ; Seigler, Mike A. ; Chen, Yonghua ; Ju, Ganping ; Thiele, Jan-Ulrich</creator><creatorcontrib>Kubota, Yukiko ; Peng, Yingguo ; Ding, Yinfeng ; Chang, Eric K. C. ; Gao, Li ; Zavaliche, Florin ; Klemmer, Timothy J. ; Zhu, Sha ; Zhu, Xiaobin ; Huang, Pin-Wei ; Wu, Alexander Q. ; Amini, Hassib ; Granz, Steven ; Rausch, Tim ; Rea, Chris J. ; Qiu, Jiaoming ; Yin, Huaqing ; Seigler, Mike A. ; Chen, Yonghua ; Ju, Ganping ; Thiele, Jan-Ulrich</creatorcontrib><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient >10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2851973</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TC distributions ; Anisotropic magnetoresistance ; Anisotropy ; Basic Technology Demonstration (BTD) demo ; Critical components ; Curie temperature ; Density ; Extensibility ; FePt:X media ; Head ; Heat-assisted magnetic recording ; heat-assisted magnetic recording (HAMR) ; Intermetallic compounds ; Iron compounds ; Magnetic heads ; Magnetic properties ; Magnetic recording ; Magnetic storage ; Magnetic switching ; Magnetic tape ; Magnetism ; Media ; media microstructure ; near-field transducer (NFT) ; Perpendicular magnetic recording ; Platinum compounds ; Recording instruments ; Thermal design ; Thermodynamic properties</subject><ispartof>IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</citedby><cites>FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</cites><orcidid>0000-0002-9621-9300 ; 0000-0002-3909-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8438518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8438518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Peng, Yingguo</creatorcontrib><creatorcontrib>Ding, Yinfeng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zavaliche, Florin</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Zhu, Sha</creatorcontrib><creatorcontrib>Zhu, Xiaobin</creatorcontrib><creatorcontrib>Huang, Pin-Wei</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Granz, Steven</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Qiu, Jiaoming</creatorcontrib><creatorcontrib>Yin, Huaqing</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Chen, Yonghua</creatorcontrib><creatorcontrib>Ju, Ganping</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><title>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient >10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TC distributions</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Basic Technology Demonstration (BTD) demo</subject><subject>Critical components</subject><subject>Curie temperature</subject><subject>Density</subject><subject>Extensibility</subject><subject>FePt:X media</subject><subject>Head</subject><subject>Heat-assisted magnetic recording</subject><subject>heat-assisted magnetic recording (HAMR)</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Magnetic heads</subject><subject>Magnetic properties</subject><subject>Magnetic recording</subject><subject>Magnetic storage</subject><subject>Magnetic switching</subject><subject>Magnetic tape</subject><subject>Magnetism</subject><subject>Media</subject><subject>media microstructure</subject><subject>near-field transducer (NFT)</subject><subject>Perpendicular magnetic recording</subject><subject>Platinum compounds</subject><subject>Recording instruments</subject><subject>Thermal design</subject><subject>Thermodynamic properties</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPHjamkmyHzkuWluhRZR6Dtnd2ZpSd2uSgv33ZmnxNAzvMzPMQ8gtsAkAU4-rZTmbcAbFhBcpqFyckREoCQljmTonIxajRMlMXpIr7zexlSmwEXmfowlJ6b31ARu6NOsOg63pB9a9a2y3fvB0-huw87ayWxsONPR0btdfdGE7NI6arqGlQ7OlzwMUDtfkojVbjzenOiafL9PV0zxZvM1en8pFUkuWh4RDbSCteK2MNLWoQLE8ZdjkXMq2VZzFuMiYwhYzySBrG1MVnPEalMiFYmJM7o97d67_2aMPetPvXRdPag48_i6yQkQKjlTteu8dtnrn7LdxBw1MD-b0YE4P5vTJXJy5O85YRPznCyliXog_qu1ong</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Kubota, Yukiko</creator><creator>Peng, Yingguo</creator><creator>Ding, Yinfeng</creator><creator>Chang, Eric K. C.</creator><creator>Gao, Li</creator><creator>Zavaliche, Florin</creator><creator>Klemmer, Timothy J.</creator><creator>Zhu, Sha</creator><creator>Zhu, Xiaobin</creator><creator>Huang, Pin-Wei</creator><creator>Wu, Alexander Q.</creator><creator>Amini, Hassib</creator><creator>Granz, Steven</creator><creator>Rausch, Tim</creator><creator>Rea, Chris J.</creator><creator>Qiu, Jiaoming</creator><creator>Yin, Huaqing</creator><creator>Seigler, Mike A.</creator><creator>Chen, Yonghua</creator><creator>Ju, Ganping</creator><creator>Thiele, Jan-Ulrich</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9621-9300</orcidid><orcidid>https://orcid.org/0000-0002-3909-680X</orcidid></search><sort><creationdate>20181101</creationdate><title>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</title><author>Kubota, Yukiko ; Peng, Yingguo ; Ding, Yinfeng ; Chang, Eric K. C. ; Gao, Li ; Zavaliche, Florin ; Klemmer, Timothy J. ; Zhu, Sha ; Zhu, Xiaobin ; Huang, Pin-Wei ; Wu, Alexander Q. ; Amini, Hassib ; Granz, Steven ; Rausch, Tim ; Rea, Chris J. ; Qiu, Jiaoming ; Yin, Huaqing ; Seigler, Mike A. ; Chen, Yonghua ; Ju, Ganping ; Thiele, Jan-Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TC distributions</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Basic Technology Demonstration (BTD) demo</topic><topic>Critical components</topic><topic>Curie temperature</topic><topic>Density</topic><topic>Extensibility</topic><topic>FePt:X media</topic><topic>Head</topic><topic>Heat-assisted magnetic recording</topic><topic>heat-assisted magnetic recording (HAMR)</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Magnetic heads</topic><topic>Magnetic properties</topic><topic>Magnetic recording</topic><topic>Magnetic storage</topic><topic>Magnetic switching</topic><topic>Magnetic tape</topic><topic>Magnetism</topic><topic>Media</topic><topic>media microstructure</topic><topic>near-field transducer (NFT)</topic><topic>Perpendicular magnetic recording</topic><topic>Platinum compounds</topic><topic>Recording instruments</topic><topic>Thermal design</topic><topic>Thermodynamic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Peng, Yingguo</creatorcontrib><creatorcontrib>Ding, Yinfeng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zavaliche, Florin</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Zhu, Sha</creatorcontrib><creatorcontrib>Zhu, Xiaobin</creatorcontrib><creatorcontrib>Huang, Pin-Wei</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Granz, Steven</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Qiu, Jiaoming</creatorcontrib><creatorcontrib>Yin, Huaqing</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Chen, Yonghua</creatorcontrib><creatorcontrib>Ju, Ganping</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kubota, Yukiko</au><au>Peng, Yingguo</au><au>Ding, Yinfeng</au><au>Chang, Eric K. C.</au><au>Gao, Li</au><au>Zavaliche, Florin</au><au>Klemmer, Timothy J.</au><au>Zhu, Sha</au><au>Zhu, Xiaobin</au><au>Huang, Pin-Wei</au><au>Wu, Alexander Q.</au><au>Amini, Hassib</au><au>Granz, Steven</au><au>Rausch, Tim</au><au>Rea, Chris J.</au><au>Qiu, Jiaoming</au><au>Yin, Huaqing</au><au>Seigler, Mike A.</au><au>Chen, Yonghua</au><au>Ju, Ganping</au><au>Thiele, Jan-Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>54</volume><issue>11</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient >10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2851973</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9621-9300</orcidid><orcidid>https://orcid.org/0000-0002-3909-680X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-6 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_journals_2121943683 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TC distributions Anisotropic magnetoresistance Anisotropy Basic Technology Demonstration (BTD) demo Critical components Curie temperature Density Extensibility FePt:X media Head Heat-assisted magnetic recording heat-assisted magnetic recording (HAMR) Intermetallic compounds Iron compounds Magnetic heads Magnetic properties Magnetic recording Magnetic storage Magnetic switching Magnetic tape Magnetism Media media microstructure near-field transducer (NFT) Perpendicular magnetic recording Platinum compounds Recording instruments Thermal design Thermodynamic properties |
title | Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-Assisted%20Magnetic%20Recording's%20Extensibility%20to%20High%20Linear%20and%20Areal%20Density&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kubota,%20Yukiko&rft.date=2018-11-01&rft.volume=54&rft.issue=11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2851973&rft_dat=%3Cproquest_RIE%3E2121943683%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121943683&rft_id=info:pmid/&rft_ieee_id=8438518&rfr_iscdi=true |