Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density

Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2018-11, Vol.54 (11), p.1-6
Hauptverfasser: Kubota, Yukiko, Peng, Yingguo, Ding, Yinfeng, Chang, Eric K. C., Gao, Li, Zavaliche, Florin, Klemmer, Timothy J., Zhu, Sha, Zhu, Xiaobin, Huang, Pin-Wei, Wu, Alexander Q., Amini, Hassib, Granz, Steven, Rausch, Tim, Rea, Chris J., Qiu, Jiaoming, Yin, Huaqing, Seigler, Mike A., Chen, Yonghua, Ju, Ganping, Thiele, Jan-Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 54
creator Kubota, Yukiko
Peng, Yingguo
Ding, Yinfeng
Chang, Eric K. C.
Gao, Li
Zavaliche, Florin
Klemmer, Timothy J.
Zhu, Sha
Zhu, Xiaobin
Huang, Pin-Wei
Wu, Alexander Q.
Amini, Hassib
Granz, Steven
Rausch, Tim
Rea, Chris J.
Qiu, Jiaoming
Yin, Huaqing
Seigler, Mike A.
Chen, Yonghua
Ju, Ganping
Thiele, Jan-Ulrich
description Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient >10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling.
doi_str_mv 10.1109/TMAG.2018.2851973
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121943683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8438518</ieee_id><sourcerecordid>2121943683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPHjamkmyHzkuWluhRZR6Dtnd2ZpSd2uSgv33ZmnxNAzvMzPMQ8gtsAkAU4-rZTmbcAbFhBcpqFyckREoCQljmTonIxajRMlMXpIr7zexlSmwEXmfowlJ6b31ARu6NOsOg63pB9a9a2y3fvB0-huw87ayWxsONPR0btdfdGE7NI6arqGlQ7OlzwMUDtfkojVbjzenOiafL9PV0zxZvM1en8pFUkuWh4RDbSCteK2MNLWoQLE8ZdjkXMq2VZzFuMiYwhYzySBrG1MVnPEalMiFYmJM7o97d67_2aMPetPvXRdPag48_i6yQkQKjlTteu8dtnrn7LdxBw1MD-b0YE4P5vTJXJy5O85YRPznCyliXog_qu1ong</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121943683</pqid></control><display><type>article</type><title>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</title><source>IEEE Electronic Library (IEL)</source><creator>Kubota, Yukiko ; Peng, Yingguo ; Ding, Yinfeng ; Chang, Eric K. C. ; Gao, Li ; Zavaliche, Florin ; Klemmer, Timothy J. ; Zhu, Sha ; Zhu, Xiaobin ; Huang, Pin-Wei ; Wu, Alexander Q. ; Amini, Hassib ; Granz, Steven ; Rausch, Tim ; Rea, Chris J. ; Qiu, Jiaoming ; Yin, Huaqing ; Seigler, Mike A. ; Chen, Yonghua ; Ju, Ganping ; Thiele, Jan-Ulrich</creator><creatorcontrib>Kubota, Yukiko ; Peng, Yingguo ; Ding, Yinfeng ; Chang, Eric K. C. ; Gao, Li ; Zavaliche, Florin ; Klemmer, Timothy J. ; Zhu, Sha ; Zhu, Xiaobin ; Huang, Pin-Wei ; Wu, Alexander Q. ; Amini, Hassib ; Granz, Steven ; Rausch, Tim ; Rea, Chris J. ; Qiu, Jiaoming ; Yin, Huaqing ; Seigler, Mike A. ; Chen, Yonghua ; Ju, Ganping ; Thiele, Jan-Ulrich</creatorcontrib><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient &gt;10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2851973</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;TC distributions ; Anisotropic magnetoresistance ; Anisotropy ; Basic Technology Demonstration (BTD) demo ; Critical components ; Curie temperature ; Density ; Extensibility ; FePt:X media ; Head ; Heat-assisted magnetic recording ; heat-assisted magnetic recording (HAMR) ; Intermetallic compounds ; Iron compounds ; Magnetic heads ; Magnetic properties ; Magnetic recording ; Magnetic storage ; Magnetic switching ; Magnetic tape ; Magnetism ; Media ; media microstructure ; near-field transducer (NFT) ; Perpendicular magnetic recording ; Platinum compounds ; Recording instruments ; Thermal design ; Thermodynamic properties</subject><ispartof>IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</citedby><cites>FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</cites><orcidid>0000-0002-9621-9300 ; 0000-0002-3909-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8438518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8438518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Peng, Yingguo</creatorcontrib><creatorcontrib>Ding, Yinfeng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zavaliche, Florin</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Zhu, Sha</creatorcontrib><creatorcontrib>Zhu, Xiaobin</creatorcontrib><creatorcontrib>Huang, Pin-Wei</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Granz, Steven</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Qiu, Jiaoming</creatorcontrib><creatorcontrib>Yin, Huaqing</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Chen, Yonghua</creatorcontrib><creatorcontrib>Ju, Ganping</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><title>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient &gt;10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;TC distributions</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Basic Technology Demonstration (BTD) demo</subject><subject>Critical components</subject><subject>Curie temperature</subject><subject>Density</subject><subject>Extensibility</subject><subject>FePt:X media</subject><subject>Head</subject><subject>Heat-assisted magnetic recording</subject><subject>heat-assisted magnetic recording (HAMR)</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Magnetic heads</subject><subject>Magnetic properties</subject><subject>Magnetic recording</subject><subject>Magnetic storage</subject><subject>Magnetic switching</subject><subject>Magnetic tape</subject><subject>Magnetism</subject><subject>Media</subject><subject>media microstructure</subject><subject>near-field transducer (NFT)</subject><subject>Perpendicular magnetic recording</subject><subject>Platinum compounds</subject><subject>Recording instruments</subject><subject>Thermal design</subject><subject>Thermodynamic properties</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPHjamkmyHzkuWluhRZR6Dtnd2ZpSd2uSgv33ZmnxNAzvMzPMQ8gtsAkAU4-rZTmbcAbFhBcpqFyckREoCQljmTonIxajRMlMXpIr7zexlSmwEXmfowlJ6b31ARu6NOsOg63pB9a9a2y3fvB0-huw87ayWxsONPR0btdfdGE7NI6arqGlQ7OlzwMUDtfkojVbjzenOiafL9PV0zxZvM1en8pFUkuWh4RDbSCteK2MNLWoQLE8ZdjkXMq2VZzFuMiYwhYzySBrG1MVnPEalMiFYmJM7o97d67_2aMPetPvXRdPag48_i6yQkQKjlTteu8dtnrn7LdxBw1MD-b0YE4P5vTJXJy5O85YRPznCyliXog_qu1ong</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Kubota, Yukiko</creator><creator>Peng, Yingguo</creator><creator>Ding, Yinfeng</creator><creator>Chang, Eric K. C.</creator><creator>Gao, Li</creator><creator>Zavaliche, Florin</creator><creator>Klemmer, Timothy J.</creator><creator>Zhu, Sha</creator><creator>Zhu, Xiaobin</creator><creator>Huang, Pin-Wei</creator><creator>Wu, Alexander Q.</creator><creator>Amini, Hassib</creator><creator>Granz, Steven</creator><creator>Rausch, Tim</creator><creator>Rea, Chris J.</creator><creator>Qiu, Jiaoming</creator><creator>Yin, Huaqing</creator><creator>Seigler, Mike A.</creator><creator>Chen, Yonghua</creator><creator>Ju, Ganping</creator><creator>Thiele, Jan-Ulrich</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9621-9300</orcidid><orcidid>https://orcid.org/0000-0002-3909-680X</orcidid></search><sort><creationdate>20181101</creationdate><title>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</title><author>Kubota, Yukiko ; Peng, Yingguo ; Ding, Yinfeng ; Chang, Eric K. C. ; Gao, Li ; Zavaliche, Florin ; Klemmer, Timothy J. ; Zhu, Sha ; Zhu, Xiaobin ; Huang, Pin-Wei ; Wu, Alexander Q. ; Amini, Hassib ; Granz, Steven ; Rausch, Tim ; Rea, Chris J. ; Qiu, Jiaoming ; Yin, Huaqing ; Seigler, Mike A. ; Chen, Yonghua ; Ju, Ganping ; Thiele, Jan-Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-21ca15b2c9a4ac3b190750ed7244ff920ca18609efe64016fdab8202c19373903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;TC distributions</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Basic Technology Demonstration (BTD) demo</topic><topic>Critical components</topic><topic>Curie temperature</topic><topic>Density</topic><topic>Extensibility</topic><topic>FePt:X media</topic><topic>Head</topic><topic>Heat-assisted magnetic recording</topic><topic>heat-assisted magnetic recording (HAMR)</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Magnetic heads</topic><topic>Magnetic properties</topic><topic>Magnetic recording</topic><topic>Magnetic storage</topic><topic>Magnetic switching</topic><topic>Magnetic tape</topic><topic>Magnetism</topic><topic>Media</topic><topic>media microstructure</topic><topic>near-field transducer (NFT)</topic><topic>Perpendicular magnetic recording</topic><topic>Platinum compounds</topic><topic>Recording instruments</topic><topic>Thermal design</topic><topic>Thermodynamic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Peng, Yingguo</creatorcontrib><creatorcontrib>Ding, Yinfeng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zavaliche, Florin</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Zhu, Sha</creatorcontrib><creatorcontrib>Zhu, Xiaobin</creatorcontrib><creatorcontrib>Huang, Pin-Wei</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Granz, Steven</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Qiu, Jiaoming</creatorcontrib><creatorcontrib>Yin, Huaqing</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Chen, Yonghua</creatorcontrib><creatorcontrib>Ju, Ganping</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kubota, Yukiko</au><au>Peng, Yingguo</au><au>Ding, Yinfeng</au><au>Chang, Eric K. C.</au><au>Gao, Li</au><au>Zavaliche, Florin</au><au>Klemmer, Timothy J.</au><au>Zhu, Sha</au><au>Zhu, Xiaobin</au><au>Huang, Pin-Wei</au><au>Wu, Alexander Q.</au><au>Amini, Hassib</au><au>Granz, Steven</au><au>Rausch, Tim</au><au>Rea, Chris J.</au><au>Qiu, Jiaoming</au><au>Yin, Huaqing</au><au>Seigler, Mike A.</au><au>Chen, Yonghua</au><au>Ju, Ganping</au><au>Thiele, Jan-Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>54</volume><issue>11</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as the plasmonic near-field transducer and high anisotropy granular FePt media, as well as recording demonstrations and fully integrated drives have been reported. One of the remaining ongoing challenges of magnetic recording in general and HAMR in particular has been the demonstration of high linear density recording, approaching the grain-size (GS) limit of the recording media, and a clear pathway to smaller GSs while maintaining good magnetic properties and distributions. This paper will demonstrate the extensibility of FePt-based media down to the 5 nm center-to-center range. A linear recording density of 3000 kilobits per inch (kbpi), or a bit length of 8.5 nm, approaching the GS limit of this media, has been demonstrated on recording media with a slightly larger GS of 7 nm center-to-center, and using an HAMR head with high thermal gradient &gt;10 K/nm. Key parameters of the media include the microstructure, the thermal design and magnetic properties, most importantly the tradeoff between achievable GS, media moment-thickness product, Mrt, and the distributions of the magnetic switching field and the Curie temperature. Further optimizing the composition, growth, and architecture of the media stack to achieve all the prerequisite magnetic and thermal properties for high signal-to-noise ratios in the smallest demonstrated GS media allows linear recording densities of up to 4000 kbpi, and areal densities in the 3-4 tera-bits-per-square-inch range can be extrapolated based on geometrical scaling.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2851973</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9621-9300</orcidid><orcidid>https://orcid.org/0000-0002-3909-680X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-6
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2121943683
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TC distributions
Anisotropic magnetoresistance
Anisotropy
Basic Technology Demonstration (BTD) demo
Critical components
Curie temperature
Density
Extensibility
FePt:X media
Head
Heat-assisted magnetic recording
heat-assisted magnetic recording (HAMR)
Intermetallic compounds
Iron compounds
Magnetic heads
Magnetic properties
Magnetic recording
Magnetic storage
Magnetic switching
Magnetic tape
Magnetism
Media
media microstructure
near-field transducer (NFT)
Perpendicular magnetic recording
Platinum compounds
Recording instruments
Thermal design
Thermodynamic properties
title Heat-Assisted Magnetic Recording's Extensibility to High Linear and Areal Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-Assisted%20Magnetic%20Recording's%20Extensibility%20to%20High%20Linear%20and%20Areal%20Density&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kubota,%20Yukiko&rft.date=2018-11-01&rft.volume=54&rft.issue=11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2851973&rft_dat=%3Cproquest_RIE%3E2121943683%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121943683&rft_id=info:pmid/&rft_ieee_id=8438518&rfr_iscdi=true