Analysis and Optimization of Cogging Torque in Yokeless and Segmented Armature Axial-Flux Permanent-Magnet Machine With Soft Magnetic Composite Core

Yokeless and segmented armature (YASA) axial-flux permanent-magnet machine has high power density and efficiency, which is suitable for electric traction drive, especially for in-wheel or near-wheel direct-drive electric vehicles. This paper investigates and optimizes the cogging torque of the YASA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2018-11, Vol.54 (11), p.1-5
Hauptverfasser: Xu, Longjiang, Xu, Yanliang, Gong, Jinlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 54
creator Xu, Longjiang
Xu, Yanliang
Gong, Jinlin
description Yokeless and segmented armature (YASA) axial-flux permanent-magnet machine has high power density and efficiency, which is suitable for electric traction drive, especially for in-wheel or near-wheel direct-drive electric vehicles. This paper investigates and optimizes the cogging torque of the YASA machine with soft magnetic composite (SMC) core. First, the structure of YASA with SMC core is introduced. Then, the influence of magnet pole-arc ratio, magnet skewing, stator shoe width ratio, and stator shoe shifting on cogging torque is analyzed, based on which the cogging torque is optimized by establishing the response surface model and using the genetic algorithm. Finally, the optimization results are verified by the 3-D finite-element method. The results confirm that based on a certain magnet pole-arc ratio, there exists an optimum combination of magnet skew angle, stator shoe width ratio, and stator shoe shift angle for the cogging torque minimization, while the main performances of the machine remain nearly invariable.
doi_str_mv 10.1109/TMAG.2018.2850317
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121943377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412563</ieee_id><sourcerecordid>2121943377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fc320621447a7bed700acdb6476552ff0276ed80a749d2d06d914d6bb306a74e3</originalsourceid><addsrcrecordid>eNo9kN1q2zAUx0XZoFm3Byi9Eezaqb4sxZcmLN2goYVmlF0ZxTp21dlSJsnQ7jn6wJVJ6JWk_8c56IfQJSVLSkl1vdvWN0tG6GrJViXhVJ2hBa0ELQiR1Se0INkqKiHFOfoS43N-ipKSBXqrnR5eo41YO4PvDsmO9r9O1jvsO7z2fW9dj3c-_JsAW4f_-L8wQDzGH6AfwSUwuA6jTlMAXL9YPRSbYXrB95BFl_1iq3sHCW91-2Qd4EebnvCD72ZlNmybF40HH22CfAvwFX3u9BDh2-m8QL83P3brn8Xt3c2vdX1btKziqehazohkVAil1R6MIkS3Zi-FkmXJuo4wJcGsiFaiMswQaSoqjNzvOZFZA36Bvh_nHoLP_4upefZTyEBiwyjL-DhXKqfoMdUGH2OArjkEO-rw2lDSzPCbGX4zw29O8HPn6tixAPCRXwnKSsn5OwFZgbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121943377</pqid></control><display><type>article</type><title>Analysis and Optimization of Cogging Torque in Yokeless and Segmented Armature Axial-Flux Permanent-Magnet Machine With Soft Magnetic Composite Core</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Longjiang ; Xu, Yanliang ; Gong, Jinlin</creator><creatorcontrib>Xu, Longjiang ; Xu, Yanliang ; Gong, Jinlin</creatorcontrib><description>Yokeless and segmented armature (YASA) axial-flux permanent-magnet machine has high power density and efficiency, which is suitable for electric traction drive, especially for in-wheel or near-wheel direct-drive electric vehicles. This paper investigates and optimizes the cogging torque of the YASA machine with soft magnetic composite (SMC) core. First, the structure of YASA with SMC core is introduced. Then, the influence of magnet pole-arc ratio, magnet skewing, stator shoe width ratio, and stator shoe shifting on cogging torque is analyzed, based on which the cogging torque is optimized by establishing the response surface model and using the genetic algorithm. Finally, the optimization results are verified by the 3-D finite-element method. The results confirm that based on a certain magnet pole-arc ratio, there exists an optimum combination of magnet skew angle, stator shoe width ratio, and stator shoe shift angle for the cogging torque minimization, while the main performances of the machine remain nearly invariable.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2850317</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D finite-element method (FEM) ; Axial stress ; Cogging ; cogging torque ; Electric vehicles ; Finite element method ; Footwear ; Forging ; Genetic algorithms ; Magnetic analysis ; Magnetic cores ; Magnetism ; Optimization ; Permanent magnets ; Power efficiency ; response surface method ; Response surface methodology ; Skew angle ; soft magnetic composite (SMC) ; Stator cores ; Stators ; Torque ; yokeless and segmented armature (YASA) machine</subject><ispartof>IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fc320621447a7bed700acdb6476552ff0276ed80a749d2d06d914d6bb306a74e3</citedby><cites>FETCH-LOGICAL-c293t-fc320621447a7bed700acdb6476552ff0276ed80a749d2d06d914d6bb306a74e3</cites><orcidid>0000-0001-8284-4271 ; 0000-0002-5182-2704 ; 0000-0003-1365-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8412563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Longjiang</creatorcontrib><creatorcontrib>Xu, Yanliang</creatorcontrib><creatorcontrib>Gong, Jinlin</creatorcontrib><title>Analysis and Optimization of Cogging Torque in Yokeless and Segmented Armature Axial-Flux Permanent-Magnet Machine With Soft Magnetic Composite Core</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Yokeless and segmented armature (YASA) axial-flux permanent-magnet machine has high power density and efficiency, which is suitable for electric traction drive, especially for in-wheel or near-wheel direct-drive electric vehicles. This paper investigates and optimizes the cogging torque of the YASA machine with soft magnetic composite (SMC) core. First, the structure of YASA with SMC core is introduced. Then, the influence of magnet pole-arc ratio, magnet skewing, stator shoe width ratio, and stator shoe shifting on cogging torque is analyzed, based on which the cogging torque is optimized by establishing the response surface model and using the genetic algorithm. Finally, the optimization results are verified by the 3-D finite-element method. The results confirm that based on a certain magnet pole-arc ratio, there exists an optimum combination of magnet skew angle, stator shoe width ratio, and stator shoe shift angle for the cogging torque minimization, while the main performances of the machine remain nearly invariable.</description><subject>3-D finite-element method (FEM)</subject><subject>Axial stress</subject><subject>Cogging</subject><subject>cogging torque</subject><subject>Electric vehicles</subject><subject>Finite element method</subject><subject>Footwear</subject><subject>Forging</subject><subject>Genetic algorithms</subject><subject>Magnetic analysis</subject><subject>Magnetic cores</subject><subject>Magnetism</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Power efficiency</subject><subject>response surface method</subject><subject>Response surface methodology</subject><subject>Skew angle</subject><subject>soft magnetic composite (SMC)</subject><subject>Stator cores</subject><subject>Stators</subject><subject>Torque</subject><subject>yokeless and segmented armature (YASA) machine</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1q2zAUx0XZoFm3Byi9Eezaqb4sxZcmLN2goYVmlF0ZxTp21dlSJsnQ7jn6wJVJ6JWk_8c56IfQJSVLSkl1vdvWN0tG6GrJViXhVJ2hBa0ELQiR1Se0INkqKiHFOfoS43N-ipKSBXqrnR5eo41YO4PvDsmO9r9O1jvsO7z2fW9dj3c-_JsAW4f_-L8wQDzGH6AfwSUwuA6jTlMAXL9YPRSbYXrB95BFl_1iq3sHCW91-2Qd4EebnvCD72ZlNmybF40HH22CfAvwFX3u9BDh2-m8QL83P3brn8Xt3c2vdX1btKziqehazohkVAil1R6MIkS3Zi-FkmXJuo4wJcGsiFaiMswQaSoqjNzvOZFZA36Bvh_nHoLP_4upefZTyEBiwyjL-DhXKqfoMdUGH2OArjkEO-rw2lDSzPCbGX4zw29O8HPn6tixAPCRXwnKSsn5OwFZgbw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Xu, Longjiang</creator><creator>Xu, Yanliang</creator><creator>Gong, Jinlin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8284-4271</orcidid><orcidid>https://orcid.org/0000-0002-5182-2704</orcidid><orcidid>https://orcid.org/0000-0003-1365-4073</orcidid></search><sort><creationdate>20181101</creationdate><title>Analysis and Optimization of Cogging Torque in Yokeless and Segmented Armature Axial-Flux Permanent-Magnet Machine With Soft Magnetic Composite Core</title><author>Xu, Longjiang ; Xu, Yanliang ; Gong, Jinlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fc320621447a7bed700acdb6476552ff0276ed80a749d2d06d914d6bb306a74e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D finite-element method (FEM)</topic><topic>Axial stress</topic><topic>Cogging</topic><topic>cogging torque</topic><topic>Electric vehicles</topic><topic>Finite element method</topic><topic>Footwear</topic><topic>Forging</topic><topic>Genetic algorithms</topic><topic>Magnetic analysis</topic><topic>Magnetic cores</topic><topic>Magnetism</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Power efficiency</topic><topic>response surface method</topic><topic>Response surface methodology</topic><topic>Skew angle</topic><topic>soft magnetic composite (SMC)</topic><topic>Stator cores</topic><topic>Stators</topic><topic>Torque</topic><topic>yokeless and segmented armature (YASA) machine</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Longjiang</creatorcontrib><creatorcontrib>Xu, Yanliang</creatorcontrib><creatorcontrib>Gong, Jinlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Longjiang</au><au>Xu, Yanliang</au><au>Gong, Jinlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Optimization of Cogging Torque in Yokeless and Segmented Armature Axial-Flux Permanent-Magnet Machine With Soft Magnetic Composite Core</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>54</volume><issue>11</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Yokeless and segmented armature (YASA) axial-flux permanent-magnet machine has high power density and efficiency, which is suitable for electric traction drive, especially for in-wheel or near-wheel direct-drive electric vehicles. This paper investigates and optimizes the cogging torque of the YASA machine with soft magnetic composite (SMC) core. First, the structure of YASA with SMC core is introduced. Then, the influence of magnet pole-arc ratio, magnet skewing, stator shoe width ratio, and stator shoe shifting on cogging torque is analyzed, based on which the cogging torque is optimized by establishing the response surface model and using the genetic algorithm. Finally, the optimization results are verified by the 3-D finite-element method. The results confirm that based on a certain magnet pole-arc ratio, there exists an optimum combination of magnet skew angle, stator shoe width ratio, and stator shoe shift angle for the cogging torque minimization, while the main performances of the machine remain nearly invariable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2850317</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8284-4271</orcidid><orcidid>https://orcid.org/0000-0002-5182-2704</orcidid><orcidid>https://orcid.org/0000-0003-1365-4073</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2121943377
source IEEE Electronic Library (IEL)
subjects 3-D finite-element method (FEM)
Axial stress
Cogging
cogging torque
Electric vehicles
Finite element method
Footwear
Forging
Genetic algorithms
Magnetic analysis
Magnetic cores
Magnetism
Optimization
Permanent magnets
Power efficiency
response surface method
Response surface methodology
Skew angle
soft magnetic composite (SMC)
Stator cores
Stators
Torque
yokeless and segmented armature (YASA) machine
title Analysis and Optimization of Cogging Torque in Yokeless and Segmented Armature Axial-Flux Permanent-Magnet Machine With Soft Magnetic Composite Core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Optimization%20of%20Cogging%20Torque%20in%20Yokeless%20and%20Segmented%20Armature%20Axial-Flux%20Permanent-Magnet%20Machine%20With%20Soft%20Magnetic%20Composite%20Core&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Xu,%20Longjiang&rft.date=2018-11-01&rft.volume=54&rft.issue=11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2850317&rft_dat=%3Cproquest_RIE%3E2121943377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121943377&rft_id=info:pmid/&rft_ieee_id=8412563&rfr_iscdi=true