Ultra-Low Write Energy Composite Free Layer Spin-Orbit Torque MRAM

A highly efficient exchange-coupled free-layer spin-orbit torque (SOT) magnetic random access memory cell is proposed for ultra-high-density memory. By exploiting typically unrealized benefits of SOT-in particular, its compatibility with low-damping magnetic insulators and the energy efficiencies as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2018-11, Vol.54 (11), p.1-5
Hauptverfasser: Hsu, Wei-Heng, Bell, Roy, Victora, R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 54
creator Hsu, Wei-Heng
Bell, Roy
Victora, R. H.
description A highly efficient exchange-coupled free-layer spin-orbit torque (SOT) magnetic random access memory cell is proposed for ultra-high-density memory. By exploiting typically unrealized benefits of SOT-in particular, its compatibility with low-damping magnetic insulators and the energy efficiencies associated with exchange coupling of hard/soft composite structures-a write energy of 18 aJ/bit for 1 ns switching is achieved. Furthermore, high magnetocrystalline anisotropy materials such as L1 0 -FePt or L1 0 -FePd are employed not only to facilitate achievement of ultra-high-density memory but also to allow for reduction of heavy metal layer volume and a reduction in write energy not seen in previous CoFeB-based cells. This energy is within a factor 72 of the theoretical limit of 60~k_{B}T . It also represents a factor of >500 improvement relative to state-of-the-art DDR4 DRAM cells.
doi_str_mv 10.1109/TMAG.2018.2847235
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121939934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8403885</ieee_id><sourcerecordid>2121939934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-839fb371a9901d6630dc581c29a5c4bcef78d9de0ba0e93bc68d952011ae32173</originalsourceid><addsrcrecordid>eNo9UNFKwzAUDaLgnH6A-BLwOTO3SdvkcY5tCi0D3fAxpO2tdGxrTTpkf2_Khk-Xc88593APIY_AJwBcv6zz6XIScVCTSMk0EvEVGYGWwDhP9DUZ8UAxLRN5S-683wYoY-Aj8rrZ9c6yrP2lX67pkc4P6L5PdNbuu9YPi4VDpJk9oaOfXXNgK1c0PV237ueINP-Y5vfkprY7jw-XOSabxXw9e2PZavk-m2asjLTomRK6LkQKVmsOVZIIXpWxgkDauJRFiXWqKl0hLyxHLYoyCTAOL4FFEUEqxuT5fLdzbcj2vdm2R3cIkSaCCLTQWsiggrOqdK33DmvTuWZv3ckAN0NVZqjKDFWZS1XB83T2NIj4r1eSC6Vi8QctG2L2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121939934</pqid></control><display><type>article</type><title>Ultra-Low Write Energy Composite Free Layer Spin-Orbit Torque MRAM</title><source>IEEE Electronic Library (IEL)</source><creator>Hsu, Wei-Heng ; Bell, Roy ; Victora, R. H.</creator><creatorcontrib>Hsu, Wei-Heng ; Bell, Roy ; Victora, R. H.</creatorcontrib><description>A highly efficient exchange-coupled free-layer spin-orbit torque (SOT) magnetic random access memory cell is proposed for ultra-high-density memory. By exploiting typically unrealized benefits of SOT-in particular, its compatibility with low-damping magnetic insulators and the energy efficiencies associated with exchange coupling of hard/soft composite structures-a write energy of 18 aJ/bit for 1 ns switching is achieved. Furthermore, high magnetocrystalline anisotropy materials such as L1 0 -FePt or L1 0 -FePd are employed not only to facilitate achievement of ultra-high-density memory but also to allow for reduction of heavy metal layer volume and a reduction in write energy not seen in previous CoFeB-based cells. This energy is within a factor 72 of the theoretical limit of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;60~k_{B}T &lt;/tex-math&gt;&lt;/inline-formula&gt;. It also represents a factor of &gt;500 improvement relative to state-of-the-art DDR4 DRAM cells.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2847235</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Composite free layer ; Composite structures ; Computer memory ; Damping ; Density ; Dynamic random access memory ; Exchanging ; Heavy metals ; Insulators ; Intermetallic compounds ; magnetic insulator (MI) ; Magnetic tunneling ; Magnetism ; micromagnetic simulation ; Perpendicular magnetic anisotropy ; Random access memory ; Reduction ; Reduction (metal working) ; spin–orbit torque (SOT) ; Switches ; Thermal stability ; Torque</subject><ispartof>IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-839fb371a9901d6630dc581c29a5c4bcef78d9de0ba0e93bc68d952011ae32173</citedby><cites>FETCH-LOGICAL-c293t-839fb371a9901d6630dc581c29a5c4bcef78d9de0ba0e93bc68d952011ae32173</cites><orcidid>0000-0001-9006-8591 ; 0000-0003-4472-2147 ; 0000-0002-4881-6880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8403885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8403885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsu, Wei-Heng</creatorcontrib><creatorcontrib>Bell, Roy</creatorcontrib><creatorcontrib>Victora, R. H.</creatorcontrib><title>Ultra-Low Write Energy Composite Free Layer Spin-Orbit Torque MRAM</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A highly efficient exchange-coupled free-layer spin-orbit torque (SOT) magnetic random access memory cell is proposed for ultra-high-density memory. By exploiting typically unrealized benefits of SOT-in particular, its compatibility with low-damping magnetic insulators and the energy efficiencies associated with exchange coupling of hard/soft composite structures-a write energy of 18 aJ/bit for 1 ns switching is achieved. Furthermore, high magnetocrystalline anisotropy materials such as L1 0 -FePt or L1 0 -FePd are employed not only to facilitate achievement of ultra-high-density memory but also to allow for reduction of heavy metal layer volume and a reduction in write energy not seen in previous CoFeB-based cells. This energy is within a factor 72 of the theoretical limit of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;60~k_{B}T &lt;/tex-math&gt;&lt;/inline-formula&gt;. It also represents a factor of &gt;500 improvement relative to state-of-the-art DDR4 DRAM cells.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Composite free layer</subject><subject>Composite structures</subject><subject>Computer memory</subject><subject>Damping</subject><subject>Density</subject><subject>Dynamic random access memory</subject><subject>Exchanging</subject><subject>Heavy metals</subject><subject>Insulators</subject><subject>Intermetallic compounds</subject><subject>magnetic insulator (MI)</subject><subject>Magnetic tunneling</subject><subject>Magnetism</subject><subject>micromagnetic simulation</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Random access memory</subject><subject>Reduction</subject><subject>Reduction (metal working)</subject><subject>spin–orbit torque (SOT)</subject><subject>Switches</subject><subject>Thermal stability</subject><subject>Torque</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UNFKwzAUDaLgnH6A-BLwOTO3SdvkcY5tCi0D3fAxpO2tdGxrTTpkf2_Khk-Xc88593APIY_AJwBcv6zz6XIScVCTSMk0EvEVGYGWwDhP9DUZ8UAxLRN5S-683wYoY-Aj8rrZ9c6yrP2lX67pkc4P6L5PdNbuu9YPi4VDpJk9oaOfXXNgK1c0PV237ueINP-Y5vfkprY7jw-XOSabxXw9e2PZavk-m2asjLTomRK6LkQKVmsOVZIIXpWxgkDauJRFiXWqKl0hLyxHLYoyCTAOL4FFEUEqxuT5fLdzbcj2vdm2R3cIkSaCCLTQWsiggrOqdK33DmvTuWZv3ckAN0NVZqjKDFWZS1XB83T2NIj4r1eSC6Vi8QctG2L2</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Hsu, Wei-Heng</creator><creator>Bell, Roy</creator><creator>Victora, R. H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9006-8591</orcidid><orcidid>https://orcid.org/0000-0003-4472-2147</orcidid><orcidid>https://orcid.org/0000-0002-4881-6880</orcidid></search><sort><creationdate>20181101</creationdate><title>Ultra-Low Write Energy Composite Free Layer Spin-Orbit Torque MRAM</title><author>Hsu, Wei-Heng ; Bell, Roy ; Victora, R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-839fb371a9901d6630dc581c29a5c4bcef78d9de0ba0e93bc68d952011ae32173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Composite free layer</topic><topic>Composite structures</topic><topic>Computer memory</topic><topic>Damping</topic><topic>Density</topic><topic>Dynamic random access memory</topic><topic>Exchanging</topic><topic>Heavy metals</topic><topic>Insulators</topic><topic>Intermetallic compounds</topic><topic>magnetic insulator (MI)</topic><topic>Magnetic tunneling</topic><topic>Magnetism</topic><topic>micromagnetic simulation</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Random access memory</topic><topic>Reduction</topic><topic>Reduction (metal working)</topic><topic>spin–orbit torque (SOT)</topic><topic>Switches</topic><topic>Thermal stability</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Wei-Heng</creatorcontrib><creatorcontrib>Bell, Roy</creatorcontrib><creatorcontrib>Victora, R. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsu, Wei-Heng</au><au>Bell, Roy</au><au>Victora, R. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Low Write Energy Composite Free Layer Spin-Orbit Torque MRAM</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>54</volume><issue>11</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A highly efficient exchange-coupled free-layer spin-orbit torque (SOT) magnetic random access memory cell is proposed for ultra-high-density memory. By exploiting typically unrealized benefits of SOT-in particular, its compatibility with low-damping magnetic insulators and the energy efficiencies associated with exchange coupling of hard/soft composite structures-a write energy of 18 aJ/bit for 1 ns switching is achieved. Furthermore, high magnetocrystalline anisotropy materials such as L1 0 -FePt or L1 0 -FePd are employed not only to facilitate achievement of ultra-high-density memory but also to allow for reduction of heavy metal layer volume and a reduction in write energy not seen in previous CoFeB-based cells. This energy is within a factor 72 of the theoretical limit of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;60~k_{B}T &lt;/tex-math&gt;&lt;/inline-formula&gt;. It also represents a factor of &gt;500 improvement relative to state-of-the-art DDR4 DRAM cells.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2847235</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9006-8591</orcidid><orcidid>https://orcid.org/0000-0003-4472-2147</orcidid><orcidid>https://orcid.org/0000-0002-4881-6880</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2121939934
source IEEE Electronic Library (IEL)
subjects Anisotropic magnetoresistance
Anisotropy
Composite free layer
Composite structures
Computer memory
Damping
Density
Dynamic random access memory
Exchanging
Heavy metals
Insulators
Intermetallic compounds
magnetic insulator (MI)
Magnetic tunneling
Magnetism
micromagnetic simulation
Perpendicular magnetic anisotropy
Random access memory
Reduction
Reduction (metal working)
spin–orbit torque (SOT)
Switches
Thermal stability
Torque
title Ultra-Low Write Energy Composite Free Layer Spin-Orbit Torque MRAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Low%20Write%20Energy%20Composite%20Free%20Layer%20Spin-Orbit%20Torque%20MRAM&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Hsu,%20Wei-Heng&rft.date=2018-11-01&rft.volume=54&rft.issue=11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2847235&rft_dat=%3Cproquest_RIE%3E2121939934%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121939934&rft_id=info:pmid/&rft_ieee_id=8403885&rfr_iscdi=true