A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer

This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2018-10, Vol.23 (5), p.2369-2378
Hauptverfasser: Sariyildiz, Emre, Sekiguchi, Hiromu, Nozaki, Takahiro, Ugurlu, Barkan, Ohnishi, Kouhei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2378
container_issue 5
container_start_page 2369
container_title IEEE/ASME transactions on mechatronics
container_volume 23
creator Sariyildiz, Emre
Sekiguchi, Hiromu
Nozaki, Takahiro
Ugurlu, Barkan
Ohnishi, Kouhei
description This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.
doi_str_mv 10.1109/TMECH.2018.2854844
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121920941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8409314</ieee_id><sourcerecordid>2121920941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhYMoWKt_QC8LnlNnspt2c6y1WqGlohW8hc1mgltitu5uCv33JlY8zWPmvYH3RdE1wggRsrvNaj5bjBJAOUpkKqQQJ9EAM4ExoPg47TRIHgvB0_PowvstAAgEHET7KXsLqjC1CQc2bVR98MazyjoWPolNtaaanArGNvG98lSyV1u0PrAX602_ZTPbBGdrZqv-ZANbqcbs2loF6zzbG8UejA-tK1Sjia0LT25P7jI6q1Tt6epvDqP3x_lmtoiX66fn2XQZaz7GEGvBIU1SwokuCw1cEWnopFJAkqioMp0WiuRkXGGSCUmi5LKCCrAsSRWaD6Pb49-ds98t-ZBvbeu6mj5PMMEsgY5R50qOLu2s946qfOfMl3KHHCHv-ea_fPOeb_7HtwvdHEOGiP4DUkDGUfAf4-x6Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121920941</pqid></control><display><type>article</type><title>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</title><source>IEEE Electronic Library (IEL)</source><creator>Sariyildiz, Emre ; Sekiguchi, Hiromu ; Nozaki, Takahiro ; Ugurlu, Barkan ; Ohnishi, Kouhei</creator><creatorcontrib>Sariyildiz, Emre ; Sekiguchi, Hiromu ; Nozaki, Takahiro ; Ugurlu, Barkan ; Ohnishi, Kouhei</creatorcontrib><description>This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2018.2854844</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Acceleration-based control (ABC) ; Bandwidth ; Control stability ; Control systems ; disturbance observer (DOb) ; Disturbance observers ; Dynamic stability ; Inertia ; Manipulators ; Motion control ; Motion stability ; Noise sensitivity ; Nonlinear analysis ; nonlinear stability analysis ; passivity-based control ; Position control ; Robot arms ; Robot control ; Robots ; Robust control ; robust position control ; Stability analysis ; Tracking control ; Trajectory control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2018-10, Vol.23 (5), p.2369-2378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</citedby><cites>FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</cites><orcidid>0000-0002-9124-7441 ; 0000-0002-0785-3992 ; 0000-0002-2558-9822 ; 0000-0002-4528-2545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8409314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8409314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sariyildiz, Emre</creatorcontrib><creatorcontrib>Sekiguchi, Hiromu</creatorcontrib><creatorcontrib>Nozaki, Takahiro</creatorcontrib><creatorcontrib>Ugurlu, Barkan</creatorcontrib><creatorcontrib>Ohnishi, Kouhei</creatorcontrib><title>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.</description><subject>Acceleration</subject><subject>Acceleration-based control (ABC)</subject><subject>Bandwidth</subject><subject>Control stability</subject><subject>Control systems</subject><subject>disturbance observer (DOb)</subject><subject>Disturbance observers</subject><subject>Dynamic stability</subject><subject>Inertia</subject><subject>Manipulators</subject><subject>Motion control</subject><subject>Motion stability</subject><subject>Noise sensitivity</subject><subject>Nonlinear analysis</subject><subject>nonlinear stability analysis</subject><subject>passivity-based control</subject><subject>Position control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robots</subject><subject>Robust control</subject><subject>robust position control</subject><subject>Stability analysis</subject><subject>Tracking control</subject><subject>Trajectory control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhYMoWKt_QC8LnlNnspt2c6y1WqGlohW8hc1mgltitu5uCv33JlY8zWPmvYH3RdE1wggRsrvNaj5bjBJAOUpkKqQQJ9EAM4ExoPg47TRIHgvB0_PowvstAAgEHET7KXsLqjC1CQc2bVR98MazyjoWPolNtaaanArGNvG98lSyV1u0PrAX602_ZTPbBGdrZqv-ZANbqcbs2loF6zzbG8UejA-tK1Sjia0LT25P7jI6q1Tt6epvDqP3x_lmtoiX66fn2XQZaz7GEGvBIU1SwokuCw1cEWnopFJAkqioMp0WiuRkXGGSCUmi5LKCCrAsSRWaD6Pb49-ds98t-ZBvbeu6mj5PMMEsgY5R50qOLu2s946qfOfMl3KHHCHv-ea_fPOeb_7HtwvdHEOGiP4DUkDGUfAf4-x6Hg</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Sariyildiz, Emre</creator><creator>Sekiguchi, Hiromu</creator><creator>Nozaki, Takahiro</creator><creator>Ugurlu, Barkan</creator><creator>Ohnishi, Kouhei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9124-7441</orcidid><orcidid>https://orcid.org/0000-0002-0785-3992</orcidid><orcidid>https://orcid.org/0000-0002-2558-9822</orcidid><orcidid>https://orcid.org/0000-0002-4528-2545</orcidid></search><sort><creationdate>201810</creationdate><title>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</title><author>Sariyildiz, Emre ; Sekiguchi, Hiromu ; Nozaki, Takahiro ; Ugurlu, Barkan ; Ohnishi, Kouhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Acceleration-based control (ABC)</topic><topic>Bandwidth</topic><topic>Control stability</topic><topic>Control systems</topic><topic>disturbance observer (DOb)</topic><topic>Disturbance observers</topic><topic>Dynamic stability</topic><topic>Inertia</topic><topic>Manipulators</topic><topic>Motion control</topic><topic>Motion stability</topic><topic>Noise sensitivity</topic><topic>Nonlinear analysis</topic><topic>nonlinear stability analysis</topic><topic>passivity-based control</topic><topic>Position control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robots</topic><topic>Robust control</topic><topic>robust position control</topic><topic>Stability analysis</topic><topic>Tracking control</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sariyildiz, Emre</creatorcontrib><creatorcontrib>Sekiguchi, Hiromu</creatorcontrib><creatorcontrib>Nozaki, Takahiro</creatorcontrib><creatorcontrib>Ugurlu, Barkan</creatorcontrib><creatorcontrib>Ohnishi, Kouhei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sariyildiz, Emre</au><au>Sekiguchi, Hiromu</au><au>Nozaki, Takahiro</au><au>Ugurlu, Barkan</au><au>Ohnishi, Kouhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2018-10</date><risdate>2018</risdate><volume>23</volume><issue>5</issue><spage>2369</spage><epage>2378</epage><pages>2369-2378</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2018.2854844</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9124-7441</orcidid><orcidid>https://orcid.org/0000-0002-0785-3992</orcidid><orcidid>https://orcid.org/0000-0002-2558-9822</orcidid><orcidid>https://orcid.org/0000-0002-4528-2545</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2018-10, Vol.23 (5), p.2369-2378
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2121920941
source IEEE Electronic Library (IEL)
subjects Acceleration
Acceleration-based control (ABC)
Bandwidth
Control stability
Control systems
disturbance observer (DOb)
Disturbance observers
Dynamic stability
Inertia
Manipulators
Motion control
Motion stability
Noise sensitivity
Nonlinear analysis
nonlinear stability analysis
passivity-based control
Position control
Robot arms
Robot control
Robots
Robust control
robust position control
Stability analysis
Tracking control
Trajectory control
title A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stability%20Analysis%20for%20the%20Acceleration-Based%20Robust%20Position%20Control%20of%20Robot%20Manipulators%20via%20Disturbance%20Observer&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Sariyildiz,%20Emre&rft.date=2018-10&rft.volume=23&rft.issue=5&rft.spage=2369&rft.epage=2378&rft.pages=2369-2378&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2018.2854844&rft_dat=%3Cproquest_RIE%3E2121920941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121920941&rft_id=info:pmid/&rft_ieee_id=8409314&rfr_iscdi=true