A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer
This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2018-10, Vol.23 (5), p.2369-2378 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2378 |
---|---|
container_issue | 5 |
container_start_page | 2369 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 23 |
creator | Sariyildiz, Emre Sekiguchi, Hiromu Nozaki, Takahiro Ugurlu, Barkan Ohnishi, Kouhei |
description | This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results. |
doi_str_mv | 10.1109/TMECH.2018.2854844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2121920941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8409314</ieee_id><sourcerecordid>2121920941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhYMoWKt_QC8LnlNnspt2c6y1WqGlohW8hc1mgltitu5uCv33JlY8zWPmvYH3RdE1wggRsrvNaj5bjBJAOUpkKqQQJ9EAM4ExoPg47TRIHgvB0_PowvstAAgEHET7KXsLqjC1CQc2bVR98MazyjoWPolNtaaanArGNvG98lSyV1u0PrAX602_ZTPbBGdrZqv-ZANbqcbs2loF6zzbG8UejA-tK1Sjia0LT25P7jI6q1Tt6epvDqP3x_lmtoiX66fn2XQZaz7GEGvBIU1SwokuCw1cEWnopFJAkqioMp0WiuRkXGGSCUmi5LKCCrAsSRWaD6Pb49-ds98t-ZBvbeu6mj5PMMEsgY5R50qOLu2s946qfOfMl3KHHCHv-ea_fPOeb_7HtwvdHEOGiP4DUkDGUfAf4-x6Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121920941</pqid></control><display><type>article</type><title>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</title><source>IEEE Electronic Library (IEL)</source><creator>Sariyildiz, Emre ; Sekiguchi, Hiromu ; Nozaki, Takahiro ; Ugurlu, Barkan ; Ohnishi, Kouhei</creator><creatorcontrib>Sariyildiz, Emre ; Sekiguchi, Hiromu ; Nozaki, Takahiro ; Ugurlu, Barkan ; Ohnishi, Kouhei</creatorcontrib><description>This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2018.2854844</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Acceleration-based control (ABC) ; Bandwidth ; Control stability ; Control systems ; disturbance observer (DOb) ; Disturbance observers ; Dynamic stability ; Inertia ; Manipulators ; Motion control ; Motion stability ; Noise sensitivity ; Nonlinear analysis ; nonlinear stability analysis ; passivity-based control ; Position control ; Robot arms ; Robot control ; Robots ; Robust control ; robust position control ; Stability analysis ; Tracking control ; Trajectory control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2018-10, Vol.23 (5), p.2369-2378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</citedby><cites>FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</cites><orcidid>0000-0002-9124-7441 ; 0000-0002-0785-3992 ; 0000-0002-2558-9822 ; 0000-0002-4528-2545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8409314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8409314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sariyildiz, Emre</creatorcontrib><creatorcontrib>Sekiguchi, Hiromu</creatorcontrib><creatorcontrib>Nozaki, Takahiro</creatorcontrib><creatorcontrib>Ugurlu, Barkan</creatorcontrib><creatorcontrib>Ohnishi, Kouhei</creatorcontrib><title>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.</description><subject>Acceleration</subject><subject>Acceleration-based control (ABC)</subject><subject>Bandwidth</subject><subject>Control stability</subject><subject>Control systems</subject><subject>disturbance observer (DOb)</subject><subject>Disturbance observers</subject><subject>Dynamic stability</subject><subject>Inertia</subject><subject>Manipulators</subject><subject>Motion control</subject><subject>Motion stability</subject><subject>Noise sensitivity</subject><subject>Nonlinear analysis</subject><subject>nonlinear stability analysis</subject><subject>passivity-based control</subject><subject>Position control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robots</subject><subject>Robust control</subject><subject>robust position control</subject><subject>Stability analysis</subject><subject>Tracking control</subject><subject>Trajectory control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhYMoWKt_QC8LnlNnspt2c6y1WqGlohW8hc1mgltitu5uCv33JlY8zWPmvYH3RdE1wggRsrvNaj5bjBJAOUpkKqQQJ9EAM4ExoPg47TRIHgvB0_PowvstAAgEHET7KXsLqjC1CQc2bVR98MazyjoWPolNtaaanArGNvG98lSyV1u0PrAX602_ZTPbBGdrZqv-ZANbqcbs2loF6zzbG8UejA-tK1Sjia0LT25P7jI6q1Tt6epvDqP3x_lmtoiX66fn2XQZaz7GEGvBIU1SwokuCw1cEWnopFJAkqioMp0WiuRkXGGSCUmi5LKCCrAsSRWaD6Pb49-ds98t-ZBvbeu6mj5PMMEsgY5R50qOLu2s946qfOfMl3KHHCHv-ea_fPOeb_7HtwvdHEOGiP4DUkDGUfAf4-x6Hg</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Sariyildiz, Emre</creator><creator>Sekiguchi, Hiromu</creator><creator>Nozaki, Takahiro</creator><creator>Ugurlu, Barkan</creator><creator>Ohnishi, Kouhei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9124-7441</orcidid><orcidid>https://orcid.org/0000-0002-0785-3992</orcidid><orcidid>https://orcid.org/0000-0002-2558-9822</orcidid><orcidid>https://orcid.org/0000-0002-4528-2545</orcidid></search><sort><creationdate>201810</creationdate><title>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</title><author>Sariyildiz, Emre ; Sekiguchi, Hiromu ; Nozaki, Takahiro ; Ugurlu, Barkan ; Ohnishi, Kouhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c430525e17cdbc03aeec0cdbaa0e8eebf9c5bae876f12948e4d38f0f01ddeabc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Acceleration-based control (ABC)</topic><topic>Bandwidth</topic><topic>Control stability</topic><topic>Control systems</topic><topic>disturbance observer (DOb)</topic><topic>Disturbance observers</topic><topic>Dynamic stability</topic><topic>Inertia</topic><topic>Manipulators</topic><topic>Motion control</topic><topic>Motion stability</topic><topic>Noise sensitivity</topic><topic>Nonlinear analysis</topic><topic>nonlinear stability analysis</topic><topic>passivity-based control</topic><topic>Position control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robots</topic><topic>Robust control</topic><topic>robust position control</topic><topic>Stability analysis</topic><topic>Tracking control</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sariyildiz, Emre</creatorcontrib><creatorcontrib>Sekiguchi, Hiromu</creatorcontrib><creatorcontrib>Nozaki, Takahiro</creatorcontrib><creatorcontrib>Ugurlu, Barkan</creatorcontrib><creatorcontrib>Ohnishi, Kouhei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sariyildiz, Emre</au><au>Sekiguchi, Hiromu</au><au>Nozaki, Takahiro</au><au>Ugurlu, Barkan</au><au>Ohnishi, Kouhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2018-10</date><risdate>2018</risdate><volume>23</volume><issue>5</issue><spage>2369</spage><epage>2378</epage><pages>2369-2378</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using disturbance observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of a DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory-tracking control. As the bandwidth of a DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of the DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise-sensitive when they are increased. The proposed stability analysis provides insights into the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that nondiagonal elements of the nominal inertia matrix are useful in improving the stability and in adjusting the tradeoff between robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2018.2854844</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9124-7441</orcidid><orcidid>https://orcid.org/0000-0002-0785-3992</orcidid><orcidid>https://orcid.org/0000-0002-2558-9822</orcidid><orcidid>https://orcid.org/0000-0002-4528-2545</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2018-10, Vol.23 (5), p.2369-2378 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_2121920941 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Acceleration-based control (ABC) Bandwidth Control stability Control systems disturbance observer (DOb) Disturbance observers Dynamic stability Inertia Manipulators Motion control Motion stability Noise sensitivity Nonlinear analysis nonlinear stability analysis passivity-based control Position control Robot arms Robot control Robots Robust control robust position control Stability analysis Tracking control Trajectory control |
title | A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stability%20Analysis%20for%20the%20Acceleration-Based%20Robust%20Position%20Control%20of%20Robot%20Manipulators%20via%20Disturbance%20Observer&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Sariyildiz,%20Emre&rft.date=2018-10&rft.volume=23&rft.issue=5&rft.spage=2369&rft.epage=2378&rft.pages=2369-2378&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2018.2854844&rft_dat=%3Cproquest_RIE%3E2121920941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121920941&rft_id=info:pmid/&rft_ieee_id=8409314&rfr_iscdi=true |