Evaporation-driven clustering of microscale pillars and lamellae

As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2016-02, Vol.28 (2)
Hauptverfasser: Kim, Tae-Hong, Kim, Jungchul, Kim, Ho-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physics of fluids (1994)
container_volume 28
creator Kim, Tae-Hong
Kim, Jungchul
Kim, Ho-Young
description As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.
doi_str_mv 10.1063/1.4941083
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2121889431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121889431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAK4WpeU-yU0p9QMGNrkOaSTRlmozJTMF_74wtdiG4uvfCxznnHgAuEZwhyMktmlFJERTkCEyGIcuKc3487hUsOSfoFJzlvIYQEon5BNwttrqNSXc-hrJOfmtDYZo-dzb58F5EV2y8STEb3dii9U2jUy50qItGb-xw2XNw4nST7cV-TsHbw-J1_lQuXx6f5_fL0hDGurJGWLCVpRhZQSqHXGWQEDVjjgpqzRC4krWoqxWS2mKJNZXSQYExYyuptSZTcLXTjbnzKhvfWfNhYgjWdApjKjCV6EC1KX72NndqHfsUhmAKIzw4SkpG6npHjZ_lZJ1qk9_o9KUQVGONCql9jQN7s2NHy5-afuFtTAdQtbX7D_6r_A1e8X8d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121889431</pqid></control><display><type>article</type><title>Evaporation-driven clustering of microscale pillars and lamellae</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Tae-Hong ; Kim, Jungchul ; Kim, Ho-Young</creator><creatorcontrib>Kim, Tae-Hong ; Kim, Jungchul ; Kim, Ho-Young</creatorcontrib><description>As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4941083</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Clustering ; COALESCENCE ; Coalescing ; DRYING ; EVAPORATION ; Fluid dynamics ; LAMELLAE ; LIQUIDS ; MANUFACTURING ; MATERIALS SCIENCE ; MICROSTRUCTURE ; NANOSTRUCTURES ; Physics ; POLYMERS ; Restoration ; SEMICONDUCTOR MATERIALS ; Stiction ; TRANSIENTS</subject><ispartof>Physics of fluids (1994), 2016-02, Vol.28 (2)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</citedby><cites>FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22482491$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae-Hong</creatorcontrib><creatorcontrib>Kim, Jungchul</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><title>Evaporation-driven clustering of microscale pillars and lamellae</title><title>Physics of fluids (1994)</title><description>As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Clustering</subject><subject>COALESCENCE</subject><subject>Coalescing</subject><subject>DRYING</subject><subject>EVAPORATION</subject><subject>Fluid dynamics</subject><subject>LAMELLAE</subject><subject>LIQUIDS</subject><subject>MANUFACTURING</subject><subject>MATERIALS SCIENCE</subject><subject>MICROSTRUCTURE</subject><subject>NANOSTRUCTURES</subject><subject>Physics</subject><subject>POLYMERS</subject><subject>Restoration</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>Stiction</subject><subject>TRANSIENTS</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAK4WpeU-yU0p9QMGNrkOaSTRlmozJTMF_74wtdiG4uvfCxznnHgAuEZwhyMktmlFJERTkCEyGIcuKc3487hUsOSfoFJzlvIYQEon5BNwttrqNSXc-hrJOfmtDYZo-dzb58F5EV2y8STEb3dii9U2jUy50qItGb-xw2XNw4nST7cV-TsHbw-J1_lQuXx6f5_fL0hDGurJGWLCVpRhZQSqHXGWQEDVjjgpqzRC4krWoqxWS2mKJNZXSQYExYyuptSZTcLXTjbnzKhvfWfNhYgjWdApjKjCV6EC1KX72NndqHfsUhmAKIzw4SkpG6npHjZ_lZJ1qk9_o9KUQVGONCql9jQN7s2NHy5-afuFtTAdQtbX7D_6r_A1e8X8d</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Kim, Tae-Hong</creator><creator>Kim, Jungchul</creator><creator>Kim, Ho-Young</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160201</creationdate><title>Evaporation-driven clustering of microscale pillars and lamellae</title><author>Kim, Tae-Hong ; Kim, Jungchul ; Kim, Ho-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Clustering</topic><topic>COALESCENCE</topic><topic>Coalescing</topic><topic>DRYING</topic><topic>EVAPORATION</topic><topic>Fluid dynamics</topic><topic>LAMELLAE</topic><topic>LIQUIDS</topic><topic>MANUFACTURING</topic><topic>MATERIALS SCIENCE</topic><topic>MICROSTRUCTURE</topic><topic>NANOSTRUCTURES</topic><topic>Physics</topic><topic>POLYMERS</topic><topic>Restoration</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>Stiction</topic><topic>TRANSIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae-Hong</creatorcontrib><creatorcontrib>Kim, Jungchul</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae-Hong</au><au>Kim, Jungchul</au><au>Kim, Ho-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation-driven clustering of microscale pillars and lamellae</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>28</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4941083</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2016-02, Vol.28 (2)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2121889431
source AIP Journals Complete; Alma/SFX Local Collection
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Clustering
COALESCENCE
Coalescing
DRYING
EVAPORATION
Fluid dynamics
LAMELLAE
LIQUIDS
MANUFACTURING
MATERIALS SCIENCE
MICROSTRUCTURE
NANOSTRUCTURES
Physics
POLYMERS
Restoration
SEMICONDUCTOR MATERIALS
Stiction
TRANSIENTS
title Evaporation-driven clustering of microscale pillars and lamellae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation-driven%20clustering%20of%20microscale%20pillars%20and%20lamellae&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kim,%20Tae-Hong&rft.date=2016-02-01&rft.volume=28&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4941083&rft_dat=%3Cproquest_osti_%3E2121889431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121889431&rft_id=info:pmid/&rfr_iscdi=true