Evaporation-driven clustering of microscale pillars and lamellae
As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications,...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2016-02, Vol.28 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 28 |
creator | Kim, Tae-Hong Kim, Jungchul Kim, Ho-Young |
description | As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering. |
doi_str_mv | 10.1063/1.4941083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2121889431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121889431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAK4WpeU-yU0p9QMGNrkOaSTRlmozJTMF_74wtdiG4uvfCxznnHgAuEZwhyMktmlFJERTkCEyGIcuKc3487hUsOSfoFJzlvIYQEon5BNwttrqNSXc-hrJOfmtDYZo-dzb58F5EV2y8STEb3dii9U2jUy50qItGb-xw2XNw4nST7cV-TsHbw-J1_lQuXx6f5_fL0hDGurJGWLCVpRhZQSqHXGWQEDVjjgpqzRC4krWoqxWS2mKJNZXSQYExYyuptSZTcLXTjbnzKhvfWfNhYgjWdApjKjCV6EC1KX72NndqHfsUhmAKIzw4SkpG6npHjZ_lZJ1qk9_o9KUQVGONCql9jQN7s2NHy5-afuFtTAdQtbX7D_6r_A1e8X8d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121889431</pqid></control><display><type>article</type><title>Evaporation-driven clustering of microscale pillars and lamellae</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Tae-Hong ; Kim, Jungchul ; Kim, Ho-Young</creator><creatorcontrib>Kim, Tae-Hong ; Kim, Jungchul ; Kim, Ho-Young</creatorcontrib><description>As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4941083</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Clustering ; COALESCENCE ; Coalescing ; DRYING ; EVAPORATION ; Fluid dynamics ; LAMELLAE ; LIQUIDS ; MANUFACTURING ; MATERIALS SCIENCE ; MICROSTRUCTURE ; NANOSTRUCTURES ; Physics ; POLYMERS ; Restoration ; SEMICONDUCTOR MATERIALS ; Stiction ; TRANSIENTS</subject><ispartof>Physics of fluids (1994), 2016-02, Vol.28 (2)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</citedby><cites>FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22482491$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae-Hong</creatorcontrib><creatorcontrib>Kim, Jungchul</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><title>Evaporation-driven clustering of microscale pillars and lamellae</title><title>Physics of fluids (1994)</title><description>As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Clustering</subject><subject>COALESCENCE</subject><subject>Coalescing</subject><subject>DRYING</subject><subject>EVAPORATION</subject><subject>Fluid dynamics</subject><subject>LAMELLAE</subject><subject>LIQUIDS</subject><subject>MANUFACTURING</subject><subject>MATERIALS SCIENCE</subject><subject>MICROSTRUCTURE</subject><subject>NANOSTRUCTURES</subject><subject>Physics</subject><subject>POLYMERS</subject><subject>Restoration</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>Stiction</subject><subject>TRANSIENTS</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAK4WpeU-yU0p9QMGNrkOaSTRlmozJTMF_74wtdiG4uvfCxznnHgAuEZwhyMktmlFJERTkCEyGIcuKc3487hUsOSfoFJzlvIYQEon5BNwttrqNSXc-hrJOfmtDYZo-dzb58F5EV2y8STEb3dii9U2jUy50qItGb-xw2XNw4nST7cV-TsHbw-J1_lQuXx6f5_fL0hDGurJGWLCVpRhZQSqHXGWQEDVjjgpqzRC4krWoqxWS2mKJNZXSQYExYyuptSZTcLXTjbnzKhvfWfNhYgjWdApjKjCV6EC1KX72NndqHfsUhmAKIzw4SkpG6npHjZ_lZJ1qk9_o9KUQVGONCql9jQN7s2NHy5-afuFtTAdQtbX7D_6r_A1e8X8d</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Kim, Tae-Hong</creator><creator>Kim, Jungchul</creator><creator>Kim, Ho-Young</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160201</creationdate><title>Evaporation-driven clustering of microscale pillars and lamellae</title><author>Kim, Tae-Hong ; Kim, Jungchul ; Kim, Ho-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d1285be421e837f1f7c188d55f484ec08379d8d7b19ae292a499f082255b9aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Clustering</topic><topic>COALESCENCE</topic><topic>Coalescing</topic><topic>DRYING</topic><topic>EVAPORATION</topic><topic>Fluid dynamics</topic><topic>LAMELLAE</topic><topic>LIQUIDS</topic><topic>MANUFACTURING</topic><topic>MATERIALS SCIENCE</topic><topic>MICROSTRUCTURE</topic><topic>NANOSTRUCTURES</topic><topic>Physics</topic><topic>POLYMERS</topic><topic>Restoration</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>Stiction</topic><topic>TRANSIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae-Hong</creatorcontrib><creatorcontrib>Kim, Jungchul</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae-Hong</au><au>Kim, Jungchul</au><au>Kim, Ho-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation-driven clustering of microscale pillars and lamellae</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>28</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4941083</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2016-02, Vol.28 (2) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2121889431 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Clustering COALESCENCE Coalescing DRYING EVAPORATION Fluid dynamics LAMELLAE LIQUIDS MANUFACTURING MATERIALS SCIENCE MICROSTRUCTURE NANOSTRUCTURES Physics POLYMERS Restoration SEMICONDUCTOR MATERIALS Stiction TRANSIENTS |
title | Evaporation-driven clustering of microscale pillars and lamellae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation-driven%20clustering%20of%20microscale%20pillars%20and%20lamellae&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kim,%20Tae-Hong&rft.date=2016-02-01&rft.volume=28&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4941083&rft_dat=%3Cproquest_osti_%3E2121889431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121889431&rft_id=info:pmid/&rfr_iscdi=true |