Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations

Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-02, Vol.108 (5)
Hauptverfasser: Berdiyorov, G. R., El-Mellouhi, F., Madjet, M. E., Alharbi, F. H., Rashkeev, S. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics letters
container_volume 108
creator Berdiyorov, G. R.
El-Mellouhi, F.
Madjet, M. E.
Alharbi, F. H.
Rashkeev, S. N.
description Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.
doi_str_mv 10.1063/1.4941296
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121878088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121878088</sourcerecordid><originalsourceid>FETCH-LOGICAL-j319t-bd5aec5040565cbb75854cf1e89d00c8bc2f95096a915b236d2e96416aff33183</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqUw8A8ssSGl-OLYsdlQVWilChjKbDmOAylpHGy3Ev-ehFRiY7o73ffenR5C10BmQDi9g1kmM0glP0ETIHmeUABxiiaEEJpwyeAcXYSw7UeWUjpBdtFYE71ra4Oj123onI-4brHz77p1Oxt10_S7znp3CJ91tHi-pM9L-lqs6D3efFjsXWOxq0ZFjxodazcY1LaNv324RGeVboK9OtYpentcbObLZP3ytJo_rJMtBRmTomTaGkYywjgzRZEzwTJTgRWyJMSIwqSVZERyLYEVKeVlaiXPgOuqohQEnaKb0bfz7mtvQ1Rbt_dtf1KlkILIBREDdTtSwdTjg6rz9U77b3VwXoE6Rqi6svoPBqKGzP8E9Adw3XM6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121878088</pqid></control><display><type>article</type><title>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Berdiyorov, G. R. ; El-Mellouhi, F. ; Madjet, M. E. ; Alharbi, F. H. ; Rashkeev, S. N.</creator><creatorcontrib>Berdiyorov, G. R. ; El-Mellouhi, F. ; Madjet, M. E. ; Alharbi, F. H. ; Rashkeev, S. N.</creatorcontrib><description>Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4941296</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferroelectricity ; Applied physics ; Cations ; Chemical bonds ; Density functional theory ; Dipole moments ; Domain walls ; Electron transport ; Ferroelectric materials ; Green's functions ; Perovskites ; Transport properties</subject><ispartof>Applied physics letters, 2016-02, Vol.108 (5)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5798-0001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4941296$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Berdiyorov, G. R.</creatorcontrib><creatorcontrib>El-Mellouhi, F.</creatorcontrib><creatorcontrib>Madjet, M. E.</creatorcontrib><creatorcontrib>Alharbi, F. H.</creatorcontrib><creatorcontrib>Rashkeev, S. N.</creatorcontrib><title>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</title><title>Applied physics letters</title><description>Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.</description><subject>Antiferroelectricity</subject><subject>Applied physics</subject><subject>Cations</subject><subject>Chemical bonds</subject><subject>Density functional theory</subject><subject>Dipole moments</subject><subject>Domain walls</subject><subject>Electron transport</subject><subject>Ferroelectric materials</subject><subject>Green's functions</subject><subject>Perovskites</subject><subject>Transport properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqUw8A8ssSGl-OLYsdlQVWilChjKbDmOAylpHGy3Ev-ehFRiY7o73ffenR5C10BmQDi9g1kmM0glP0ETIHmeUABxiiaEEJpwyeAcXYSw7UeWUjpBdtFYE71ra4Oj123onI-4brHz77p1Oxt10_S7znp3CJ91tHi-pM9L-lqs6D3efFjsXWOxq0ZFjxodazcY1LaNv324RGeVboK9OtYpentcbObLZP3ytJo_rJMtBRmTomTaGkYywjgzRZEzwTJTgRWyJMSIwqSVZERyLYEVKeVlaiXPgOuqohQEnaKb0bfz7mtvQ1Rbt_dtf1KlkILIBREDdTtSwdTjg6rz9U77b3VwXoE6Rqi6svoPBqKGzP8E9Adw3XM6</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Berdiyorov, G. R.</creator><creator>El-Mellouhi, F.</creator><creator>Madjet, M. E.</creator><creator>Alharbi, F. H.</creator><creator>Rashkeev, S. N.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5798-0001</orcidid></search><sort><creationdate>20160201</creationdate><title>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</title><author>Berdiyorov, G. R. ; El-Mellouhi, F. ; Madjet, M. E. ; Alharbi, F. H. ; Rashkeev, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j319t-bd5aec5040565cbb75854cf1e89d00c8bc2f95096a915b236d2e96416aff33183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antiferroelectricity</topic><topic>Applied physics</topic><topic>Cations</topic><topic>Chemical bonds</topic><topic>Density functional theory</topic><topic>Dipole moments</topic><topic>Domain walls</topic><topic>Electron transport</topic><topic>Ferroelectric materials</topic><topic>Green's functions</topic><topic>Perovskites</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berdiyorov, G. R.</creatorcontrib><creatorcontrib>El-Mellouhi, F.</creatorcontrib><creatorcontrib>Madjet, M. E.</creatorcontrib><creatorcontrib>Alharbi, F. H.</creatorcontrib><creatorcontrib>Rashkeev, S. N.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berdiyorov, G. R.</au><au>El-Mellouhi, F.</au><au>Madjet, M. E.</au><au>Alharbi, F. H.</au><au>Rashkeev, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</atitle><jtitle>Applied physics letters</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>108</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4941296</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5798-0001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-02, Vol.108 (5)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2121878088
source AIP Journals Complete; Alma/SFX Local Collection
subjects Antiferroelectricity
Applied physics
Cations
Chemical bonds
Density functional theory
Dipole moments
Domain walls
Electron transport
Ferroelectric materials
Green's functions
Perovskites
Transport properties
title Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20organometallic%20perovskite%20CH3NH3PbI3:%20The%20role%20of%20organic%20cation%20orientations&rft.jtitle=Applied%20physics%20letters&rft.au=Berdiyorov,%20G.%20R.&rft.date=2016-02-01&rft.volume=108&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4941296&rft_dat=%3Cproquest_scita%3E2121878088%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121878088&rft_id=info:pmid/&rfr_iscdi=true