Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations
Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-02, Vol.108 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 108 |
creator | Berdiyorov, G. R. El-Mellouhi, F. Madjet, M. E. Alharbi, F. H. Rashkeev, S. N. |
description | Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment. |
doi_str_mv | 10.1063/1.4941296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121878088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121878088</sourcerecordid><originalsourceid>FETCH-LOGICAL-j319t-bd5aec5040565cbb75854cf1e89d00c8bc2f95096a915b236d2e96416aff33183</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqUw8A8ssSGl-OLYsdlQVWilChjKbDmOAylpHGy3Ev-ehFRiY7o73ffenR5C10BmQDi9g1kmM0glP0ETIHmeUABxiiaEEJpwyeAcXYSw7UeWUjpBdtFYE71ra4Oj123onI-4brHz77p1Oxt10_S7znp3CJ91tHi-pM9L-lqs6D3efFjsXWOxq0ZFjxodazcY1LaNv324RGeVboK9OtYpentcbObLZP3ytJo_rJMtBRmTomTaGkYywjgzRZEzwTJTgRWyJMSIwqSVZERyLYEVKeVlaiXPgOuqohQEnaKb0bfz7mtvQ1Rbt_dtf1KlkILIBREDdTtSwdTjg6rz9U77b3VwXoE6Rqi6svoPBqKGzP8E9Adw3XM6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121878088</pqid></control><display><type>article</type><title>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Berdiyorov, G. R. ; El-Mellouhi, F. ; Madjet, M. E. ; Alharbi, F. H. ; Rashkeev, S. N.</creator><creatorcontrib>Berdiyorov, G. R. ; El-Mellouhi, F. ; Madjet, M. E. ; Alharbi, F. H. ; Rashkeev, S. N.</creatorcontrib><description>Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4941296</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferroelectricity ; Applied physics ; Cations ; Chemical bonds ; Density functional theory ; Dipole moments ; Domain walls ; Electron transport ; Ferroelectric materials ; Green's functions ; Perovskites ; Transport properties</subject><ispartof>Applied physics letters, 2016-02, Vol.108 (5)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5798-0001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4941296$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Berdiyorov, G. R.</creatorcontrib><creatorcontrib>El-Mellouhi, F.</creatorcontrib><creatorcontrib>Madjet, M. E.</creatorcontrib><creatorcontrib>Alharbi, F. H.</creatorcontrib><creatorcontrib>Rashkeev, S. N.</creatorcontrib><title>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</title><title>Applied physics letters</title><description>Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.</description><subject>Antiferroelectricity</subject><subject>Applied physics</subject><subject>Cations</subject><subject>Chemical bonds</subject><subject>Density functional theory</subject><subject>Dipole moments</subject><subject>Domain walls</subject><subject>Electron transport</subject><subject>Ferroelectric materials</subject><subject>Green's functions</subject><subject>Perovskites</subject><subject>Transport properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqUw8A8ssSGl-OLYsdlQVWilChjKbDmOAylpHGy3Ev-ehFRiY7o73ffenR5C10BmQDi9g1kmM0glP0ETIHmeUABxiiaEEJpwyeAcXYSw7UeWUjpBdtFYE71ra4Oj123onI-4brHz77p1Oxt10_S7znp3CJ91tHi-pM9L-lqs6D3efFjsXWOxq0ZFjxodazcY1LaNv324RGeVboK9OtYpentcbObLZP3ytJo_rJMtBRmTomTaGkYywjgzRZEzwTJTgRWyJMSIwqSVZERyLYEVKeVlaiXPgOuqohQEnaKb0bfz7mtvQ1Rbt_dtf1KlkILIBREDdTtSwdTjg6rz9U77b3VwXoE6Rqi6svoPBqKGzP8E9Adw3XM6</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Berdiyorov, G. R.</creator><creator>El-Mellouhi, F.</creator><creator>Madjet, M. E.</creator><creator>Alharbi, F. H.</creator><creator>Rashkeev, S. N.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5798-0001</orcidid></search><sort><creationdate>20160201</creationdate><title>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</title><author>Berdiyorov, G. R. ; El-Mellouhi, F. ; Madjet, M. E. ; Alharbi, F. H. ; Rashkeev, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j319t-bd5aec5040565cbb75854cf1e89d00c8bc2f95096a915b236d2e96416aff33183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antiferroelectricity</topic><topic>Applied physics</topic><topic>Cations</topic><topic>Chemical bonds</topic><topic>Density functional theory</topic><topic>Dipole moments</topic><topic>Domain walls</topic><topic>Electron transport</topic><topic>Ferroelectric materials</topic><topic>Green's functions</topic><topic>Perovskites</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berdiyorov, G. R.</creatorcontrib><creatorcontrib>El-Mellouhi, F.</creatorcontrib><creatorcontrib>Madjet, M. E.</creatorcontrib><creatorcontrib>Alharbi, F. H.</creatorcontrib><creatorcontrib>Rashkeev, S. N.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berdiyorov, G. R.</au><au>El-Mellouhi, F.</au><au>Madjet, M. E.</au><au>Alharbi, F. H.</au><au>Rashkeev, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations</atitle><jtitle>Applied physics letters</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>108</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4941296</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5798-0001</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-02, Vol.108 (5) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2121878088 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Antiferroelectricity Applied physics Cations Chemical bonds Density functional theory Dipole moments Domain walls Electron transport Ferroelectric materials Green's functions Perovskites Transport properties |
title | Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20organometallic%20perovskite%20CH3NH3PbI3:%20The%20role%20of%20organic%20cation%20orientations&rft.jtitle=Applied%20physics%20letters&rft.au=Berdiyorov,%20G.%20R.&rft.date=2016-02-01&rft.volume=108&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4941296&rft_dat=%3Cproquest_scita%3E2121878088%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121878088&rft_id=info:pmid/&rfr_iscdi=true |