Improving the performance of cardiac abnormality detection from PCG signal
The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance o...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1715 |
creator | Sujit, N. R. Kumar, C. Santhosh Rajesh, C. B. |
description | The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%. |
doi_str_mv | 10.1063/1.4942735 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121867162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121867162</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-20c93ae746090edde5d97bae1341b3a693005a97225e894e537d788ad8dd031e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKsL3yDgTpia_0yWUrRWCrpQcBfSyTc1pTMZk2mhb2-HFty5unA5XA4XoVtKJpQo_kAnwgimuTxDIyolLbSi6hyNCDGiYIJ_XaKrnNeEMKN1OUKv86ZLcRfaFe6_AXeQ6pga11aAY40rl3xwFXbLdmg3od9jDz1UfYgtrlNs8Pt0hnNYtW5zjS5qt8lwc8ox-nx--pi-FIu32Xz6uCg6JnlfMFIZ7kALRQwB70F6o5cOKBd0yZ0ynBDpjGZMQmkESK69LkvnS-8Jp8DH6O64exD_2ULu7Tpu00EgW0YZLZWmih2o-yOVq9C7wdd2KTQu7S0ldvjKUnv66j94F9MfaDtf81_5MWl-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121867162</pqid></control><display><type>conference_proceeding</type><title>Improving the performance of cardiac abnormality detection from PCG signal</title><source>AIP Journals Complete</source><creator>Sujit, N. R. ; Kumar, C. Santhosh ; Rajesh, C. B.</creator><contributor>Solanki, L. ; Singh, Kulwant ; Bhatnagar, P S ; Pandey, Manoj ; Dandin, Shridhar B</contributor><creatorcontrib>Sujit, N. R. ; Kumar, C. Santhosh ; Rajesh, C. B. ; Solanki, L. ; Singh, Kulwant ; Bhatnagar, P S ; Pandey, Manoj ; Dandin, Shridhar B</creatorcontrib><description>The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4942735</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Classification ; Decision trees ; Feature extraction ; Heart ; Machine learning ; Performance enhancement ; Regression analysis ; Sensitivity ; Signal analysis</subject><ispartof>AIP conference proceedings, 2016, Vol.1715 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4942735$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Solanki, L.</contributor><contributor>Singh, Kulwant</contributor><contributor>Bhatnagar, P S</contributor><contributor>Pandey, Manoj</contributor><contributor>Dandin, Shridhar B</contributor><creatorcontrib>Sujit, N. R.</creatorcontrib><creatorcontrib>Kumar, C. Santhosh</creatorcontrib><creatorcontrib>Rajesh, C. B.</creatorcontrib><title>Improving the performance of cardiac abnormality detection from PCG signal</title><title>AIP conference proceedings</title><description>The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Machine learning</subject><subject>Performance enhancement</subject><subject>Regression analysis</subject><subject>Sensitivity</subject><subject>Signal analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEYRYMoWKsL3yDgTpia_0yWUrRWCrpQcBfSyTc1pTMZk2mhb2-HFty5unA5XA4XoVtKJpQo_kAnwgimuTxDIyolLbSi6hyNCDGiYIJ_XaKrnNeEMKN1OUKv86ZLcRfaFe6_AXeQ6pga11aAY40rl3xwFXbLdmg3od9jDz1UfYgtrlNs8Pt0hnNYtW5zjS5qt8lwc8ox-nx--pi-FIu32Xz6uCg6JnlfMFIZ7kALRQwB70F6o5cOKBd0yZ0ynBDpjGZMQmkESK69LkvnS-8Jp8DH6O64exD_2ULu7Tpu00EgW0YZLZWmih2o-yOVq9C7wdd2KTQu7S0ldvjKUnv66j94F9MfaDtf81_5MWl-</recordid><startdate>20160309</startdate><enddate>20160309</enddate><creator>Sujit, N. R.</creator><creator>Kumar, C. Santhosh</creator><creator>Rajesh, C. B.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160309</creationdate><title>Improving the performance of cardiac abnormality detection from PCG signal</title><author>Sujit, N. R. ; Kumar, C. Santhosh ; Rajesh, C. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-20c93ae746090edde5d97bae1341b3a693005a97225e894e537d788ad8dd031e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Machine learning</topic><topic>Performance enhancement</topic><topic>Regression analysis</topic><topic>Sensitivity</topic><topic>Signal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sujit, N. R.</creatorcontrib><creatorcontrib>Kumar, C. Santhosh</creatorcontrib><creatorcontrib>Rajesh, C. B.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sujit, N. R.</au><au>Kumar, C. Santhosh</au><au>Rajesh, C. B.</au><au>Solanki, L.</au><au>Singh, Kulwant</au><au>Bhatnagar, P S</au><au>Pandey, Manoj</au><au>Dandin, Shridhar B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the performance of cardiac abnormality detection from PCG signal</atitle><btitle>AIP conference proceedings</btitle><date>2016-03-09</date><risdate>2016</risdate><volume>1715</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4942735</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2016, Vol.1715 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2121867162 |
source | AIP Journals Complete |
subjects | Accuracy Classification Decision trees Feature extraction Heart Machine learning Performance enhancement Regression analysis Sensitivity Signal analysis |
title | Improving the performance of cardiac abnormality detection from PCG signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20performance%20of%20cardiac%20abnormality%20detection%20from%20PCG%20signal&rft.btitle=AIP%20conference%20proceedings&rft.au=Sujit,%20N.%20R.&rft.date=2016-03-09&rft.volume=1715&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4942735&rft_dat=%3Cproquest_scita%3E2121867162%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121867162&rft_id=info:pmid/&rfr_iscdi=true |