Improving the performance of cardiac abnormality detection from PCG signal

The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sujit, N. R., Kumar, C. Santhosh, Rajesh, C. B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1715
creator Sujit, N. R.
Kumar, C. Santhosh
Rajesh, C. B.
description The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.
doi_str_mv 10.1063/1.4942735
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121867162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121867162</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-20c93ae746090edde5d97bae1341b3a693005a97225e894e537d788ad8dd031e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKsL3yDgTpia_0yWUrRWCrpQcBfSyTc1pTMZk2mhb2-HFty5unA5XA4XoVtKJpQo_kAnwgimuTxDIyolLbSi6hyNCDGiYIJ_XaKrnNeEMKN1OUKv86ZLcRfaFe6_AXeQ6pga11aAY40rl3xwFXbLdmg3od9jDz1UfYgtrlNs8Pt0hnNYtW5zjS5qt8lwc8ox-nx--pi-FIu32Xz6uCg6JnlfMFIZ7kALRQwB70F6o5cOKBd0yZ0ynBDpjGZMQmkESK69LkvnS-8Jp8DH6O64exD_2ULu7Tpu00EgW0YZLZWmih2o-yOVq9C7wdd2KTQu7S0ldvjKUnv66j94F9MfaDtf81_5MWl-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121867162</pqid></control><display><type>conference_proceeding</type><title>Improving the performance of cardiac abnormality detection from PCG signal</title><source>AIP Journals Complete</source><creator>Sujit, N. R. ; Kumar, C. Santhosh ; Rajesh, C. B.</creator><contributor>Solanki, L. ; Singh, Kulwant ; Bhatnagar, P S ; Pandey, Manoj ; Dandin, Shridhar B</contributor><creatorcontrib>Sujit, N. R. ; Kumar, C. Santhosh ; Rajesh, C. B. ; Solanki, L. ; Singh, Kulwant ; Bhatnagar, P S ; Pandey, Manoj ; Dandin, Shridhar B</creatorcontrib><description>The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4942735</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Classification ; Decision trees ; Feature extraction ; Heart ; Machine learning ; Performance enhancement ; Regression analysis ; Sensitivity ; Signal analysis</subject><ispartof>AIP conference proceedings, 2016, Vol.1715 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4942735$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Solanki, L.</contributor><contributor>Singh, Kulwant</contributor><contributor>Bhatnagar, P S</contributor><contributor>Pandey, Manoj</contributor><contributor>Dandin, Shridhar B</contributor><creatorcontrib>Sujit, N. R.</creatorcontrib><creatorcontrib>Kumar, C. Santhosh</creatorcontrib><creatorcontrib>Rajesh, C. B.</creatorcontrib><title>Improving the performance of cardiac abnormality detection from PCG signal</title><title>AIP conference proceedings</title><description>The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Machine learning</subject><subject>Performance enhancement</subject><subject>Regression analysis</subject><subject>Sensitivity</subject><subject>Signal analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEYRYMoWKsL3yDgTpia_0yWUrRWCrpQcBfSyTc1pTMZk2mhb2-HFty5unA5XA4XoVtKJpQo_kAnwgimuTxDIyolLbSi6hyNCDGiYIJ_XaKrnNeEMKN1OUKv86ZLcRfaFe6_AXeQ6pga11aAY40rl3xwFXbLdmg3od9jDz1UfYgtrlNs8Pt0hnNYtW5zjS5qt8lwc8ox-nx--pi-FIu32Xz6uCg6JnlfMFIZ7kALRQwB70F6o5cOKBd0yZ0ynBDpjGZMQmkESK69LkvnS-8Jp8DH6O64exD_2ULu7Tpu00EgW0YZLZWmih2o-yOVq9C7wdd2KTQu7S0ldvjKUnv66j94F9MfaDtf81_5MWl-</recordid><startdate>20160309</startdate><enddate>20160309</enddate><creator>Sujit, N. R.</creator><creator>Kumar, C. Santhosh</creator><creator>Rajesh, C. B.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160309</creationdate><title>Improving the performance of cardiac abnormality detection from PCG signal</title><author>Sujit, N. R. ; Kumar, C. Santhosh ; Rajesh, C. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-20c93ae746090edde5d97bae1341b3a693005a97225e894e537d788ad8dd031e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Machine learning</topic><topic>Performance enhancement</topic><topic>Regression analysis</topic><topic>Sensitivity</topic><topic>Signal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sujit, N. R.</creatorcontrib><creatorcontrib>Kumar, C. Santhosh</creatorcontrib><creatorcontrib>Rajesh, C. B.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sujit, N. R.</au><au>Kumar, C. Santhosh</au><au>Rajesh, C. B.</au><au>Solanki, L.</au><au>Singh, Kulwant</au><au>Bhatnagar, P S</au><au>Pandey, Manoj</au><au>Dandin, Shridhar B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the performance of cardiac abnormality detection from PCG signal</atitle><btitle>AIP conference proceedings</btitle><date>2016-03-09</date><risdate>2016</risdate><volume>1715</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4942735</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1715 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2121867162
source AIP Journals Complete
subjects Accuracy
Classification
Decision trees
Feature extraction
Heart
Machine learning
Performance enhancement
Regression analysis
Sensitivity
Signal analysis
title Improving the performance of cardiac abnormality detection from PCG signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20performance%20of%20cardiac%20abnormality%20detection%20from%20PCG%20signal&rft.btitle=AIP%20conference%20proceedings&rft.au=Sujit,%20N.%20R.&rft.date=2016-03-09&rft.volume=1715&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4942735&rft_dat=%3Cproquest_scita%3E2121867162%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121867162&rft_id=info:pmid/&rfr_iscdi=true