Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique

We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-03, Vol.108 (12)
Hauptverfasser: Kwak, Jeong Hun, Lee, Sung Su, Lee, Hyeon Jun, Anoop, Gopinathan, Lee, Hye Jeong, Kim, Wan Sik, Ryu, Sang-Wan, Kim, Ha Sul, Jo, Ji Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 108
creator Kwak, Jeong Hun
Lee, Sung Su
Lee, Hyeon Jun
Anoop, Gopinathan
Lee, Hye Jeong
Kim, Wan Sik
Ryu, Sang-Wan
Kim, Ha Sul
Jo, Ji Young
description We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.
doi_str_mv 10.1063/1.4944845
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2121838988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121838988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</originalsourceid><addsrcrecordid>eNp90c1q3DAQAGBRUugm7aFvIOgpBSca_djyMSRpEwj00p6F1pLWCl7JleSEfaC-Z2U2NIdCTmJGH_PDIPQZyAWQll3CBe85l1y8QxsgXdcwAHmCNoQQ1rS9gA_oNOfHGgrK2Ab9ufHJDgXvUnwuI44OBx1iM6RDLnqafLD1S8-jLxY7P-0zXrIPOzwvU7YGTzrbhI2dY_bFx4Cffa3iQ1PDBe9j8CWm1W_1yitI1k214WpHvxsbG2zaHbBdk6kmjXcu6SModhiD_73Yj-i907Xhp5f3DP36dvvz-q55-PH9_vrqoRmYEKURvNc9bw01DgTvTLeV_Za1neBUGOIkMEbADVZqkM7KjlIiJbSUmI5aB5qdoS_HujEXr_Lg1wmGGEIdTlEqeuCSvao5xTpcLuoxLinUwRQFCpLJXsqqzo9qSDHnuraak9_rdFBA1HorBerlVtV-Pdq1pV53_4efYnqFajbuLfx_5b-6UaVe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121838988</pqid></control><display><type>article</type><title>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Kwak, Jeong Hun ; Lee, Sung Su ; Lee, Hyeon Jun ; Anoop, Gopinathan ; Lee, Hye Jeong ; Kim, Wan Sik ; Ryu, Sang-Wan ; Kim, Ha Sul ; Jo, Ji Young</creator><creatorcontrib>Kwak, Jeong Hun ; Lee, Sung Su ; Lee, Hyeon Jun ; Anoop, Gopinathan ; Lee, Hye Jeong ; Kim, Wan Sik ; Ryu, Sang-Wan ; Kim, Ha Sul ; Jo, Ji Young</creatorcontrib><description>We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4944845</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ALUMINIUM NITRIDES ; Applied physics ; APPROXIMATIONS ; Carbon ; Catalysis ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Crystal structure ; Crystallinity ; Diffraction ; ELECTRICAL PROPERTIES ; ELECTRON DIFFRACTION ; Electrons ; ENERGY BEAM DEPOSITION ; GRAIN BOUNDARIES ; GRAPHITE ; LASER RADIATION ; LASERS ; MONITORING ; NANOSTRUCTURES ; PULSED IRRADIATION ; Pulsed laser deposition ; Pulsed lasers ; PULSES ; RAMAN SPECTRA ; REFLECTION ; Silicon substrates ; SUBSTRATES ; THICKNESS</subject><ispartof>Applied physics letters, 2016-03, Vol.108 (12)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</citedby><cites>FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</cites><orcidid>0000-0002-4044-7013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4944845$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22591483$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwak, Jeong Hun</creatorcontrib><creatorcontrib>Lee, Sung Su</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Anoop, Gopinathan</creatorcontrib><creatorcontrib>Lee, Hye Jeong</creatorcontrib><creatorcontrib>Kim, Wan Sik</creatorcontrib><creatorcontrib>Ryu, Sang-Wan</creatorcontrib><creatorcontrib>Kim, Ha Sul</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><title>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</title><title>Applied physics letters</title><description>We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.</description><subject>ALUMINIUM NITRIDES</subject><subject>Applied physics</subject><subject>APPROXIMATIONS</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Diffraction</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRON DIFFRACTION</subject><subject>Electrons</subject><subject>ENERGY BEAM DEPOSITION</subject><subject>GRAIN BOUNDARIES</subject><subject>GRAPHITE</subject><subject>LASER RADIATION</subject><subject>LASERS</subject><subject>MONITORING</subject><subject>NANOSTRUCTURES</subject><subject>PULSED IRRADIATION</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>PULSES</subject><subject>RAMAN SPECTRA</subject><subject>REFLECTION</subject><subject>Silicon substrates</subject><subject>SUBSTRATES</subject><subject>THICKNESS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90c1q3DAQAGBRUugm7aFvIOgpBSca_djyMSRpEwj00p6F1pLWCl7JleSEfaC-Z2U2NIdCTmJGH_PDIPQZyAWQll3CBe85l1y8QxsgXdcwAHmCNoQQ1rS9gA_oNOfHGgrK2Ab9ufHJDgXvUnwuI44OBx1iM6RDLnqafLD1S8-jLxY7P-0zXrIPOzwvU7YGTzrbhI2dY_bFx4Cffa3iQ1PDBe9j8CWm1W_1yitI1k214WpHvxsbG2zaHbBdk6kmjXcu6SModhiD_73Yj-i907Xhp5f3DP36dvvz-q55-PH9_vrqoRmYEKURvNc9bw01DgTvTLeV_Za1neBUGOIkMEbADVZqkM7KjlIiJbSUmI5aB5qdoS_HujEXr_Lg1wmGGEIdTlEqeuCSvao5xTpcLuoxLinUwRQFCpLJXsqqzo9qSDHnuraak9_rdFBA1HorBerlVtV-Pdq1pV53_4efYnqFajbuLfx_5b-6UaVe</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Kwak, Jeong Hun</creator><creator>Lee, Sung Su</creator><creator>Lee, Hyeon Jun</creator><creator>Anoop, Gopinathan</creator><creator>Lee, Hye Jeong</creator><creator>Kim, Wan Sik</creator><creator>Ryu, Sang-Wan</creator><creator>Kim, Ha Sul</creator><creator>Jo, Ji Young</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4044-7013</orcidid></search><sort><creationdate>20160321</creationdate><title>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</title><author>Kwak, Jeong Hun ; Lee, Sung Su ; Lee, Hyeon Jun ; Anoop, Gopinathan ; Lee, Hye Jeong ; Kim, Wan Sik ; Ryu, Sang-Wan ; Kim, Ha Sul ; Jo, Ji Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ALUMINIUM NITRIDES</topic><topic>Applied physics</topic><topic>APPROXIMATIONS</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Diffraction</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRON DIFFRACTION</topic><topic>Electrons</topic><topic>ENERGY BEAM DEPOSITION</topic><topic>GRAIN BOUNDARIES</topic><topic>GRAPHITE</topic><topic>LASER RADIATION</topic><topic>LASERS</topic><topic>MONITORING</topic><topic>NANOSTRUCTURES</topic><topic>PULSED IRRADIATION</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>PULSES</topic><topic>RAMAN SPECTRA</topic><topic>REFLECTION</topic><topic>Silicon substrates</topic><topic>SUBSTRATES</topic><topic>THICKNESS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Jeong Hun</creatorcontrib><creatorcontrib>Lee, Sung Su</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Anoop, Gopinathan</creatorcontrib><creatorcontrib>Lee, Hye Jeong</creatorcontrib><creatorcontrib>Kim, Wan Sik</creatorcontrib><creatorcontrib>Ryu, Sang-Wan</creatorcontrib><creatorcontrib>Kim, Ha Sul</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwak, Jeong Hun</au><au>Lee, Sung Su</au><au>Lee, Hyeon Jun</au><au>Anoop, Gopinathan</au><au>Lee, Hye Jeong</au><au>Kim, Wan Sik</au><au>Ryu, Sang-Wan</au><au>Kim, Ha Sul</au><au>Jo, Ji Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</atitle><jtitle>Applied physics letters</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>108</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4944845</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4044-7013</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-03, Vol.108 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2121838988
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects ALUMINIUM NITRIDES
Applied physics
APPROXIMATIONS
Carbon
Catalysis
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Crystal structure
Crystallinity
Diffraction
ELECTRICAL PROPERTIES
ELECTRON DIFFRACTION
Electrons
ENERGY BEAM DEPOSITION
GRAIN BOUNDARIES
GRAPHITE
LASER RADIATION
LASERS
MONITORING
NANOSTRUCTURES
PULSED IRRADIATION
Pulsed laser deposition
Pulsed lasers
PULSES
RAMAN SPECTRA
REFLECTION
Silicon substrates
SUBSTRATES
THICKNESS
title Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20growth%20of%20nano-crystalline%20graphite%20films%20using%20pulsed%20laser%20deposition%20with%20in-situ%20monitoring%20based%20on%20reflection%20high-energy%20electron%20diffraction%20technique&rft.jtitle=Applied%20physics%20letters&rft.au=Kwak,%20Jeong%20Hun&rft.date=2016-03-21&rft.volume=108&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4944845&rft_dat=%3Cproquest_osti_%3E2121838988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121838988&rft_id=info:pmid/&rfr_iscdi=true