Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique
We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring bas...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-03, Vol.108 (12) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 108 |
creator | Kwak, Jeong Hun Lee, Sung Su Lee, Hyeon Jun Anoop, Gopinathan Lee, Hye Jeong Kim, Wan Sik Ryu, Sang-Wan Kim, Ha Sul Jo, Ji Young |
description | We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s. |
doi_str_mv | 10.1063/1.4944845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2121838988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121838988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</originalsourceid><addsrcrecordid>eNp90c1q3DAQAGBRUugm7aFvIOgpBSca_djyMSRpEwj00p6F1pLWCl7JleSEfaC-Z2U2NIdCTmJGH_PDIPQZyAWQll3CBe85l1y8QxsgXdcwAHmCNoQQ1rS9gA_oNOfHGgrK2Ab9ufHJDgXvUnwuI44OBx1iM6RDLnqafLD1S8-jLxY7P-0zXrIPOzwvU7YGTzrbhI2dY_bFx4Cffa3iQ1PDBe9j8CWm1W_1yitI1k214WpHvxsbG2zaHbBdk6kmjXcu6SModhiD_73Yj-i907Xhp5f3DP36dvvz-q55-PH9_vrqoRmYEKURvNc9bw01DgTvTLeV_Za1neBUGOIkMEbADVZqkM7KjlIiJbSUmI5aB5qdoS_HujEXr_Lg1wmGGEIdTlEqeuCSvao5xTpcLuoxLinUwRQFCpLJXsqqzo9qSDHnuraak9_rdFBA1HorBerlVtV-Pdq1pV53_4efYnqFajbuLfx_5b-6UaVe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121838988</pqid></control><display><type>article</type><title>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Kwak, Jeong Hun ; Lee, Sung Su ; Lee, Hyeon Jun ; Anoop, Gopinathan ; Lee, Hye Jeong ; Kim, Wan Sik ; Ryu, Sang-Wan ; Kim, Ha Sul ; Jo, Ji Young</creator><creatorcontrib>Kwak, Jeong Hun ; Lee, Sung Su ; Lee, Hyeon Jun ; Anoop, Gopinathan ; Lee, Hye Jeong ; Kim, Wan Sik ; Ryu, Sang-Wan ; Kim, Ha Sul ; Jo, Ji Young</creatorcontrib><description>We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4944845</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ALUMINIUM NITRIDES ; Applied physics ; APPROXIMATIONS ; Carbon ; Catalysis ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Crystal structure ; Crystallinity ; Diffraction ; ELECTRICAL PROPERTIES ; ELECTRON DIFFRACTION ; Electrons ; ENERGY BEAM DEPOSITION ; GRAIN BOUNDARIES ; GRAPHITE ; LASER RADIATION ; LASERS ; MONITORING ; NANOSTRUCTURES ; PULSED IRRADIATION ; Pulsed laser deposition ; Pulsed lasers ; PULSES ; RAMAN SPECTRA ; REFLECTION ; Silicon substrates ; SUBSTRATES ; THICKNESS</subject><ispartof>Applied physics letters, 2016-03, Vol.108 (12)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</citedby><cites>FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</cites><orcidid>0000-0002-4044-7013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4944845$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22591483$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwak, Jeong Hun</creatorcontrib><creatorcontrib>Lee, Sung Su</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Anoop, Gopinathan</creatorcontrib><creatorcontrib>Lee, Hye Jeong</creatorcontrib><creatorcontrib>Kim, Wan Sik</creatorcontrib><creatorcontrib>Ryu, Sang-Wan</creatorcontrib><creatorcontrib>Kim, Ha Sul</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><title>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</title><title>Applied physics letters</title><description>We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.</description><subject>ALUMINIUM NITRIDES</subject><subject>Applied physics</subject><subject>APPROXIMATIONS</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Diffraction</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRON DIFFRACTION</subject><subject>Electrons</subject><subject>ENERGY BEAM DEPOSITION</subject><subject>GRAIN BOUNDARIES</subject><subject>GRAPHITE</subject><subject>LASER RADIATION</subject><subject>LASERS</subject><subject>MONITORING</subject><subject>NANOSTRUCTURES</subject><subject>PULSED IRRADIATION</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>PULSES</subject><subject>RAMAN SPECTRA</subject><subject>REFLECTION</subject><subject>Silicon substrates</subject><subject>SUBSTRATES</subject><subject>THICKNESS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90c1q3DAQAGBRUugm7aFvIOgpBSca_djyMSRpEwj00p6F1pLWCl7JleSEfaC-Z2U2NIdCTmJGH_PDIPQZyAWQll3CBe85l1y8QxsgXdcwAHmCNoQQ1rS9gA_oNOfHGgrK2Ab9ufHJDgXvUnwuI44OBx1iM6RDLnqafLD1S8-jLxY7P-0zXrIPOzwvU7YGTzrbhI2dY_bFx4Cffa3iQ1PDBe9j8CWm1W_1yitI1k214WpHvxsbG2zaHbBdk6kmjXcu6SModhiD_73Yj-i907Xhp5f3DP36dvvz-q55-PH9_vrqoRmYEKURvNc9bw01DgTvTLeV_Za1neBUGOIkMEbADVZqkM7KjlIiJbSUmI5aB5qdoS_HujEXr_Lg1wmGGEIdTlEqeuCSvao5xTpcLuoxLinUwRQFCpLJXsqqzo9qSDHnuraak9_rdFBA1HorBerlVtV-Pdq1pV53_4efYnqFajbuLfx_5b-6UaVe</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Kwak, Jeong Hun</creator><creator>Lee, Sung Su</creator><creator>Lee, Hyeon Jun</creator><creator>Anoop, Gopinathan</creator><creator>Lee, Hye Jeong</creator><creator>Kim, Wan Sik</creator><creator>Ryu, Sang-Wan</creator><creator>Kim, Ha Sul</creator><creator>Jo, Ji Young</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4044-7013</orcidid></search><sort><creationdate>20160321</creationdate><title>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</title><author>Kwak, Jeong Hun ; Lee, Sung Su ; Lee, Hyeon Jun ; Anoop, Gopinathan ; Lee, Hye Jeong ; Kim, Wan Sik ; Ryu, Sang-Wan ; Kim, Ha Sul ; Jo, Ji Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-549a946d2df1547d7b89b3675425d0f813301fce8a18fe87220881620d72ef1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ALUMINIUM NITRIDES</topic><topic>Applied physics</topic><topic>APPROXIMATIONS</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Diffraction</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRON DIFFRACTION</topic><topic>Electrons</topic><topic>ENERGY BEAM DEPOSITION</topic><topic>GRAIN BOUNDARIES</topic><topic>GRAPHITE</topic><topic>LASER RADIATION</topic><topic>LASERS</topic><topic>MONITORING</topic><topic>NANOSTRUCTURES</topic><topic>PULSED IRRADIATION</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>PULSES</topic><topic>RAMAN SPECTRA</topic><topic>REFLECTION</topic><topic>Silicon substrates</topic><topic>SUBSTRATES</topic><topic>THICKNESS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Jeong Hun</creatorcontrib><creatorcontrib>Lee, Sung Su</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Anoop, Gopinathan</creatorcontrib><creatorcontrib>Lee, Hye Jeong</creatorcontrib><creatorcontrib>Kim, Wan Sik</creatorcontrib><creatorcontrib>Ryu, Sang-Wan</creatorcontrib><creatorcontrib>Kim, Ha Sul</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwak, Jeong Hun</au><au>Lee, Sung Su</au><au>Lee, Hyeon Jun</au><au>Anoop, Gopinathan</au><au>Lee, Hye Jeong</au><au>Kim, Wan Sik</au><au>Ryu, Sang-Wan</au><au>Kim, Ha Sul</au><au>Jo, Ji Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique</atitle><jtitle>Applied physics letters</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>108</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries; however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4944845</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4044-7013</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-03, Vol.108 (12) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2121838988 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | ALUMINIUM NITRIDES Applied physics APPROXIMATIONS Carbon Catalysis CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Crystal structure Crystallinity Diffraction ELECTRICAL PROPERTIES ELECTRON DIFFRACTION Electrons ENERGY BEAM DEPOSITION GRAIN BOUNDARIES GRAPHITE LASER RADIATION LASERS MONITORING NANOSTRUCTURES PULSED IRRADIATION Pulsed laser deposition Pulsed lasers PULSES RAMAN SPECTRA REFLECTION Silicon substrates SUBSTRATES THICKNESS |
title | Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20growth%20of%20nano-crystalline%20graphite%20films%20using%20pulsed%20laser%20deposition%20with%20in-situ%20monitoring%20based%20on%20reflection%20high-energy%20electron%20diffraction%20technique&rft.jtitle=Applied%20physics%20letters&rft.au=Kwak,%20Jeong%20Hun&rft.date=2016-03-21&rft.volume=108&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4944845&rft_dat=%3Cproquest_osti_%3E2121838988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121838988&rft_id=info:pmid/&rfr_iscdi=true |