Phonon wave propagation in ballistic-diffusive regime

Wide applications of ultra-short pulse laser technique in micromachining and thermophysical properties' measurements make the study on ultrafast transient thermal transport necessarily essential. When the characteristic time is comparable to the phonon relaxation time, phonons propagate in ball...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-03, Vol.119 (12)
Hauptverfasser: Tang, Dao-Sheng, Hua, Yu-Chao, Nie, Ben-Dian, Cao, Bing-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of applied physics
container_volume 119
creator Tang, Dao-Sheng
Hua, Yu-Chao
Nie, Ben-Dian
Cao, Bing-Yang
description Wide applications of ultra-short pulse laser technique in micromachining and thermophysical properties' measurements make the study on ultrafast transient thermal transport necessarily essential. When the characteristic time is comparable to the phonon relaxation time, phonons propagate in ballistic-diffusive regime and thermal wave occurs. Here, ultrafast transient phonon transport is systematically investigated based on the Monte Carlo (MC) simulations, the Cattaneo-Vernotte (C-V) model, and the phonon Boltzmann transport equation (BTE). It is found that remarkable differences exist between the C-V model and the MC simulations when describing the evolution of the thermal wave excited by the ultra-short heat pulse. The C-V model predicts a non-dispersive dissipative thermal wave, while the MC simulation with Lambert emission predicts a dispersive dissipative thermal wave. Besides, different phonon emissions can significantly influence the evolution of the thermal wave in the MC simulations. A modified C-V model with a time- and position-dependent effective thermal conductivity is derived based on the phonon BTE to characterize the evolution of the transport regime from ballistic to diffusive. The integrations on moments of the distribution function cause the loss of the information of the phonon distribution in wave vector space, making the macroscopic quantities incomplete when describing the ballistic transport processes and corresponding boundary conditions. Possible boundary conditions for the phonon BTE in practice are also discussed on different heating methods.
doi_str_mv 10.1063/1.4944646
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121836801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121836801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-fcc856fc1dac2b9956a5215af2ee47728e60856121fd2c4c91b6006534aac0df3</originalsourceid><addsrcrecordid>eNp10EtLAzEQAOAgCtbqwX9Q8KSwdSabZJOjFF9Q0IOeQ5pNakq7uybbiv_e2BY9iKeB4ZsnIecIYwRRXuOYKcYEEwdkgCBVUXEOh2QAQLGQqlLH5CSlBQCiLNWA8Oe3tmmb0YfZuFEX287MTR9yIjSjmVkuQ-qDLerg_TqFTKKbh5U7JUfeLJM728cheb27fZk8FNOn-8fJzbSwJa36wlsrufAWa2PpTCkuDKfIjafOsaqi0gnIACn6mlpmFc4EgOAlM8ZC7cshudj1zZu9r13q9aJdxyaP1DRXyVJIwKwud8rGNqXovO5iWJn4qRH091c06v1Xsr3a2WRDv730B2_a-At1tx3_L_7b-Quox2-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121836801</pqid></control><display><type>article</type><title>Phonon wave propagation in ballistic-diffusive regime</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tang, Dao-Sheng ; Hua, Yu-Chao ; Nie, Ben-Dian ; Cao, Bing-Yang</creator><creatorcontrib>Tang, Dao-Sheng ; Hua, Yu-Chao ; Nie, Ben-Dian ; Cao, Bing-Yang</creatorcontrib><description>Wide applications of ultra-short pulse laser technique in micromachining and thermophysical properties' measurements make the study on ultrafast transient thermal transport necessarily essential. When the characteristic time is comparable to the phonon relaxation time, phonons propagate in ballistic-diffusive regime and thermal wave occurs. Here, ultrafast transient phonon transport is systematically investigated based on the Monte Carlo (MC) simulations, the Cattaneo-Vernotte (C-V) model, and the phonon Boltzmann transport equation (BTE). It is found that remarkable differences exist between the C-V model and the MC simulations when describing the evolution of the thermal wave excited by the ultra-short heat pulse. The C-V model predicts a non-dispersive dissipative thermal wave, while the MC simulation with Lambert emission predicts a dispersive dissipative thermal wave. Besides, different phonon emissions can significantly influence the evolution of the thermal wave in the MC simulations. A modified C-V model with a time- and position-dependent effective thermal conductivity is derived based on the phonon BTE to characterize the evolution of the transport regime from ballistic to diffusive. The integrations on moments of the distribution function cause the loss of the information of the phonon distribution in wave vector space, making the macroscopic quantities incomplete when describing the ballistic transport processes and corresponding boundary conditions. Possible boundary conditions for the phonon BTE in practice are also discussed on different heating methods.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4944646</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boltzmann transport equation ; Boundary conditions ; Computer simulation ; Distribution functions ; Evolution ; Mathematical models ; Micromachining ; Phonons ; Relaxation time ; Simulation ; Thermal conductivity ; Thermophysical properties ; Time dependence ; Transport processes ; Wave dispersion ; Wave propagation</subject><ispartof>Journal of applied physics, 2016-03, Vol.119 (12)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-fcc856fc1dac2b9956a5215af2ee47728e60856121fd2c4c91b6006534aac0df3</citedby><cites>FETCH-LOGICAL-c327t-fcc856fc1dac2b9956a5215af2ee47728e60856121fd2c4c91b6006534aac0df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4944646$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Tang, Dao-Sheng</creatorcontrib><creatorcontrib>Hua, Yu-Chao</creatorcontrib><creatorcontrib>Nie, Ben-Dian</creatorcontrib><creatorcontrib>Cao, Bing-Yang</creatorcontrib><title>Phonon wave propagation in ballistic-diffusive regime</title><title>Journal of applied physics</title><description>Wide applications of ultra-short pulse laser technique in micromachining and thermophysical properties' measurements make the study on ultrafast transient thermal transport necessarily essential. When the characteristic time is comparable to the phonon relaxation time, phonons propagate in ballistic-diffusive regime and thermal wave occurs. Here, ultrafast transient phonon transport is systematically investigated based on the Monte Carlo (MC) simulations, the Cattaneo-Vernotte (C-V) model, and the phonon Boltzmann transport equation (BTE). It is found that remarkable differences exist between the C-V model and the MC simulations when describing the evolution of the thermal wave excited by the ultra-short heat pulse. The C-V model predicts a non-dispersive dissipative thermal wave, while the MC simulation with Lambert emission predicts a dispersive dissipative thermal wave. Besides, different phonon emissions can significantly influence the evolution of the thermal wave in the MC simulations. A modified C-V model with a time- and position-dependent effective thermal conductivity is derived based on the phonon BTE to characterize the evolution of the transport regime from ballistic to diffusive. The integrations on moments of the distribution function cause the loss of the information of the phonon distribution in wave vector space, making the macroscopic quantities incomplete when describing the ballistic transport processes and corresponding boundary conditions. Possible boundary conditions for the phonon BTE in practice are also discussed on different heating methods.</description><subject>Applied physics</subject><subject>Boltzmann transport equation</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Evolution</subject><subject>Mathematical models</subject><subject>Micromachining</subject><subject>Phonons</subject><subject>Relaxation time</subject><subject>Simulation</subject><subject>Thermal conductivity</subject><subject>Thermophysical properties</subject><subject>Time dependence</subject><subject>Transport processes</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQAOAgCtbqwX9Q8KSwdSabZJOjFF9Q0IOeQ5pNakq7uybbiv_e2BY9iKeB4ZsnIecIYwRRXuOYKcYEEwdkgCBVUXEOh2QAQLGQqlLH5CSlBQCiLNWA8Oe3tmmb0YfZuFEX287MTR9yIjSjmVkuQ-qDLerg_TqFTKKbh5U7JUfeLJM728cheb27fZk8FNOn-8fJzbSwJa36wlsrufAWa2PpTCkuDKfIjafOsaqi0gnIACn6mlpmFc4EgOAlM8ZC7cshudj1zZu9r13q9aJdxyaP1DRXyVJIwKwud8rGNqXovO5iWJn4qRH091c06v1Xsr3a2WRDv730B2_a-At1tx3_L_7b-Quox2-A</recordid><startdate>20160328</startdate><enddate>20160328</enddate><creator>Tang, Dao-Sheng</creator><creator>Hua, Yu-Chao</creator><creator>Nie, Ben-Dian</creator><creator>Cao, Bing-Yang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160328</creationdate><title>Phonon wave propagation in ballistic-diffusive regime</title><author>Tang, Dao-Sheng ; Hua, Yu-Chao ; Nie, Ben-Dian ; Cao, Bing-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-fcc856fc1dac2b9956a5215af2ee47728e60856121fd2c4c91b6006534aac0df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Boltzmann transport equation</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Evolution</topic><topic>Mathematical models</topic><topic>Micromachining</topic><topic>Phonons</topic><topic>Relaxation time</topic><topic>Simulation</topic><topic>Thermal conductivity</topic><topic>Thermophysical properties</topic><topic>Time dependence</topic><topic>Transport processes</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Dao-Sheng</creatorcontrib><creatorcontrib>Hua, Yu-Chao</creatorcontrib><creatorcontrib>Nie, Ben-Dian</creatorcontrib><creatorcontrib>Cao, Bing-Yang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Dao-Sheng</au><au>Hua, Yu-Chao</au><au>Nie, Ben-Dian</au><au>Cao, Bing-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonon wave propagation in ballistic-diffusive regime</atitle><jtitle>Journal of applied physics</jtitle><date>2016-03-28</date><risdate>2016</risdate><volume>119</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Wide applications of ultra-short pulse laser technique in micromachining and thermophysical properties' measurements make the study on ultrafast transient thermal transport necessarily essential. When the characteristic time is comparable to the phonon relaxation time, phonons propagate in ballistic-diffusive regime and thermal wave occurs. Here, ultrafast transient phonon transport is systematically investigated based on the Monte Carlo (MC) simulations, the Cattaneo-Vernotte (C-V) model, and the phonon Boltzmann transport equation (BTE). It is found that remarkable differences exist between the C-V model and the MC simulations when describing the evolution of the thermal wave excited by the ultra-short heat pulse. The C-V model predicts a non-dispersive dissipative thermal wave, while the MC simulation with Lambert emission predicts a dispersive dissipative thermal wave. Besides, different phonon emissions can significantly influence the evolution of the thermal wave in the MC simulations. A modified C-V model with a time- and position-dependent effective thermal conductivity is derived based on the phonon BTE to characterize the evolution of the transport regime from ballistic to diffusive. The integrations on moments of the distribution function cause the loss of the information of the phonon distribution in wave vector space, making the macroscopic quantities incomplete when describing the ballistic transport processes and corresponding boundary conditions. Possible boundary conditions for the phonon BTE in practice are also discussed on different heating methods.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4944646</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-03, Vol.119 (12)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2121836801
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Boltzmann transport equation
Boundary conditions
Computer simulation
Distribution functions
Evolution
Mathematical models
Micromachining
Phonons
Relaxation time
Simulation
Thermal conductivity
Thermophysical properties
Time dependence
Transport processes
Wave dispersion
Wave propagation
title Phonon wave propagation in ballistic-diffusive regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonon%20wave%20propagation%20in%20ballistic-diffusive%20regime&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tang,%20Dao-Sheng&rft.date=2016-03-28&rft.volume=119&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4944646&rft_dat=%3Cproquest_cross%3E2121836801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121836801&rft_id=info:pmid/&rfr_iscdi=true