Collection of low-grade waste heat for enhanced energy harvesting

Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-05, Vol.6 (5), p.055113-055113-6
Hauptverfasser: Dede, Ercan M., Schmalenberg, Paul, Wang, Chi-Ming, Zhou, Feng, Nomura, Tsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055113-6
container_issue 5
container_start_page 055113
container_title AIP advances
container_volume 6
creator Dede, Ercan M.
Schmalenberg, Paul
Wang, Chi-Ming
Zhou, Feng
Nomura, Tsuyoshi
description Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.
doi_str_mv 10.1063/1.4950861
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2121811312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_93ce7c11dd8842ec806d4d346c6e938e</doaj_id><sourcerecordid>2121811312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-cb3c57727afcfa5f0074f17f8072bcb990223f5713625e0ad35c8bdcf6969cca3</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxRdRUNSD32DBk8JqJtlNskcp_ikIXvQc0smk3bJuanbb0m9vaqUKgnPJEH68mfcmyy6A3QCT4hZuyrpiWsJBdsKh0oXgXB7-6o-z876fs1RlDUyXJ9ndKLQt4dCELg8-b8O6mEbrKF_bfqB8RnbIfYg5dTPbIbnUUJxu8pmNK-qHppueZUfetj2df7-n2dvD_evoqXh-eRyP7p4LLCs5FDgRWCnFlfXobeUZU6UH5TVTfIKTumacC18pEJJXxKwTFeqJQy9rWSNacZqNd7ou2LlZxObdxo0JtjFfHyFOjY1Dgy2ZWiApBHBO65ITaiZd6UQpUVItNCWty51WSBZMj81AOMPQdSkJk3ICUCnPPbWI4WOZ3Jp5WMYumTQcOGgAATxRVzsKY-j7SH6_GzCzPYsB832WxF7v2O1Iuw19D69C_AHNwvn_4L_Kn7rfmPE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121811312</pqid></control><display><type>article</type><title>Collection of low-grade waste heat for enhanced energy harvesting</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dede, Ercan M. ; Schmalenberg, Paul ; Wang, Chi-Ming ; Zhou, Feng ; Nomura, Tsuyoshi</creator><creatorcontrib>Dede, Ercan M. ; Schmalenberg, Paul ; Wang, Chi-Ming ; Zhou, Feng ; Nomura, Tsuyoshi</creatorcontrib><description>Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4950861</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>COMPARATIVE EVALUATIONS ; Computer simulation ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Conduction heating ; Conductive heat transfer ; Electronic devices ; Electronic waste ; Energy harvesting ; ENERGY STORAGE ; Flow control ; FOCUSING ; FORCED CONVECTION ; Garbage collection ; HEAT FLUX ; HEAT RECOVERY ; Heat recovery systems ; Heat transmission ; OPTIMIZATION ; Optimization techniques ; POWER GENERATION ; SENSORS ; SIMULATION ; SUBSTRATES ; TEMPERATURE MEASUREMENT ; THERMAL CONDUCTION ; THERMOELECTRIC GENERATORS ; WASTE HEAT ; Waste heat recovery</subject><ispartof>AIP advances, 2016-05, Vol.6 (5), p.055113-055113-6</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-cb3c57727afcfa5f0074f17f8072bcb990223f5713625e0ad35c8bdcf6969cca3</citedby><cites>FETCH-LOGICAL-c456t-cb3c57727afcfa5f0074f17f8072bcb990223f5713625e0ad35c8bdcf6969cca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2101,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22611706$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dede, Ercan M.</creatorcontrib><creatorcontrib>Schmalenberg, Paul</creatorcontrib><creatorcontrib>Wang, Chi-Ming</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Nomura, Tsuyoshi</creatorcontrib><title>Collection of low-grade waste heat for enhanced energy harvesting</title><title>AIP advances</title><description>Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.</description><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer simulation</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Electronic devices</subject><subject>Electronic waste</subject><subject>Energy harvesting</subject><subject>ENERGY STORAGE</subject><subject>Flow control</subject><subject>FOCUSING</subject><subject>FORCED CONVECTION</subject><subject>Garbage collection</subject><subject>HEAT FLUX</subject><subject>HEAT RECOVERY</subject><subject>Heat recovery systems</subject><subject>Heat transmission</subject><subject>OPTIMIZATION</subject><subject>Optimization techniques</subject><subject>POWER GENERATION</subject><subject>SENSORS</subject><subject>SIMULATION</subject><subject>SUBSTRATES</subject><subject>TEMPERATURE MEASUREMENT</subject><subject>THERMAL CONDUCTION</subject><subject>THERMOELECTRIC GENERATORS</subject><subject>WASTE HEAT</subject><subject>Waste heat recovery</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9LAzEQxRdRUNSD32DBk8JqJtlNskcp_ikIXvQc0smk3bJuanbb0m9vaqUKgnPJEH68mfcmyy6A3QCT4hZuyrpiWsJBdsKh0oXgXB7-6o-z876fs1RlDUyXJ9ndKLQt4dCELg8-b8O6mEbrKF_bfqB8RnbIfYg5dTPbIbnUUJxu8pmNK-qHppueZUfetj2df7-n2dvD_evoqXh-eRyP7p4LLCs5FDgRWCnFlfXobeUZU6UH5TVTfIKTumacC18pEJJXxKwTFeqJQy9rWSNacZqNd7ou2LlZxObdxo0JtjFfHyFOjY1Dgy2ZWiApBHBO65ITaiZd6UQpUVItNCWty51WSBZMj81AOMPQdSkJk3ICUCnPPbWI4WOZ3Jp5WMYumTQcOGgAATxRVzsKY-j7SH6_GzCzPYsB832WxF7v2O1Iuw19D69C_AHNwvn_4L_Kn7rfmPE</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Dede, Ercan M.</creator><creator>Schmalenberg, Paul</creator><creator>Wang, Chi-Ming</creator><creator>Zhou, Feng</creator><creator>Nomura, Tsuyoshi</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20160501</creationdate><title>Collection of low-grade waste heat for enhanced energy harvesting</title><author>Dede, Ercan M. ; Schmalenberg, Paul ; Wang, Chi-Ming ; Zhou, Feng ; Nomura, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-cb3c57727afcfa5f0074f17f8072bcb990223f5713625e0ad35c8bdcf6969cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer simulation</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Electronic devices</topic><topic>Electronic waste</topic><topic>Energy harvesting</topic><topic>ENERGY STORAGE</topic><topic>Flow control</topic><topic>FOCUSING</topic><topic>FORCED CONVECTION</topic><topic>Garbage collection</topic><topic>HEAT FLUX</topic><topic>HEAT RECOVERY</topic><topic>Heat recovery systems</topic><topic>Heat transmission</topic><topic>OPTIMIZATION</topic><topic>Optimization techniques</topic><topic>POWER GENERATION</topic><topic>SENSORS</topic><topic>SIMULATION</topic><topic>SUBSTRATES</topic><topic>TEMPERATURE MEASUREMENT</topic><topic>THERMAL CONDUCTION</topic><topic>THERMOELECTRIC GENERATORS</topic><topic>WASTE HEAT</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dede, Ercan M.</creatorcontrib><creatorcontrib>Schmalenberg, Paul</creatorcontrib><creatorcontrib>Wang, Chi-Ming</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Nomura, Tsuyoshi</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dede, Ercan M.</au><au>Schmalenberg, Paul</au><au>Wang, Chi-Ming</au><au>Zhou, Feng</au><au>Nomura, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collection of low-grade waste heat for enhanced energy harvesting</atitle><jtitle>AIP advances</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>6</volume><issue>5</issue><spage>055113</spage><epage>055113-6</epage><pages>055113-055113-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4950861</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2016-05, Vol.6 (5), p.055113-055113-6
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2121811312
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects COMPARATIVE EVALUATIONS
Computer simulation
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Conduction heating
Conductive heat transfer
Electronic devices
Electronic waste
Energy harvesting
ENERGY STORAGE
Flow control
FOCUSING
FORCED CONVECTION
Garbage collection
HEAT FLUX
HEAT RECOVERY
Heat recovery systems
Heat transmission
OPTIMIZATION
Optimization techniques
POWER GENERATION
SENSORS
SIMULATION
SUBSTRATES
TEMPERATURE MEASUREMENT
THERMAL CONDUCTION
THERMOELECTRIC GENERATORS
WASTE HEAT
Waste heat recovery
title Collection of low-grade waste heat for enhanced energy harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collection%20of%20low-grade%20waste%20heat%20for%20enhanced%20energy%20harvesting&rft.jtitle=AIP%20advances&rft.au=Dede,%20Ercan%20M.&rft.date=2016-05-01&rft.volume=6&rft.issue=5&rft.spage=055113&rft.epage=055113-6&rft.pages=055113-055113-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4950861&rft_dat=%3Cproquest_doaj_%3E2121811312%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121811312&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_93ce7c11dd8842ec806d4d346c6e938e&rfr_iscdi=true