Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer

This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-05, Vol.108 (21)
Hauptverfasser: Abliz, Ablat, Wang, Jingli, Xu, Lei, Wan, Da, Liao, Lei, Ye, Cong, Liu, Chuansheng, Jiang, Changzhong, Chen, Huipeng, Guo, Tailiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 108
creator Abliz, Ablat
Wang, Jingli
Xu, Lei
Wan, Da
Liao, Lei
Ye, Cong
Liu, Chuansheng
Jiang, Changzhong
Chen, Huipeng
Guo, Tailiang
description This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.
doi_str_mv 10.1063/1.4952445
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121806158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121806158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</originalsourceid><addsrcrecordid>eNqd0E1PAyEQBmBiNLFWD_4DEk-abOVj2e1600bbJk160YsXAixYmi2sQE3676W2Se-eCOFhZt4B4BajEUYVfcSjsmGkLNkZGGBU1wXFeHwOBgghWlQNw5fgKsZ1vjJC6QC4F-9jgtseppWGutMqBatEB3sdjA8b4ZSG3sC5m4pPt8zKOmhst4EpCBdtTD5EKHfQuqhDsu4LCge3XX79o8d_TzPYiZ0O1-DCiC7qm-M5BB9vr--TWbFYTueT50WhKGOpaExNBGkrJkqpUdkKjWRLZCORZG3dYFaRUiMjqxbTirWNMrWQmo0bxCSqctQhuDvUzeEsj8omrVbKO5fzcUJYg2pMT6oP_nurY-Jrvw0uD8YJJniMKszGWd0flAo-xqAN74PdiLDjGPH90jnmx6Vn-3Cw-5YiWe_-h398OEHet4b-AgU6j80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121806158</pqid></control><display><type>article</type><title>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Abliz, Ablat ; Wang, Jingli ; Xu, Lei ; Wan, Da ; Liao, Lei ; Ye, Cong ; Liu, Chuansheng ; Jiang, Changzhong ; Chen, Huipeng ; Guo, Tailiang</creator><creatorcontrib>Abliz, Ablat ; Wang, Jingli ; Xu, Lei ; Wan, Da ; Liao, Lei ; Ye, Cong ; Liu, Chuansheng ; Jiang, Changzhong ; Chen, Huipeng ; Guo, Tailiang</creatorcontrib><description>This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4952445</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ABUNDANCE ; Applied physics ; Bilayers ; Carrier density ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DENSITY ; ELECTRIC POTENTIAL ; ELECTRICAL PROPERTIES ; Electron transport ; LAYERS ; OXIDES ; Resistance ; Semiconductor devices ; STRESSES ; Thin film transistors ; THIN FILMS ; Threshold voltage ; TRANSISTORS ; TRAPS ; X-RAY PHOTOELECTRON SPECTROSCOPY</subject><ispartof>Applied physics letters, 2016-05, Vol.108 (21)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</citedby><cites>FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</cites><orcidid>0000-0003-1706-3174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4952445$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22590713$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abliz, Ablat</creatorcontrib><creatorcontrib>Wang, Jingli</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Wan, Da</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><creatorcontrib>Liu, Chuansheng</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><title>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</title><title>Applied physics letters</title><description>This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.</description><subject>ABUNDANCE</subject><subject>Applied physics</subject><subject>Bilayers</subject><subject>Carrier density</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DENSITY</subject><subject>ELECTRIC POTENTIAL</subject><subject>ELECTRICAL PROPERTIES</subject><subject>Electron transport</subject><subject>LAYERS</subject><subject>OXIDES</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>STRESSES</subject><subject>Thin film transistors</subject><subject>THIN FILMS</subject><subject>Threshold voltage</subject><subject>TRANSISTORS</subject><subject>TRAPS</subject><subject>X-RAY PHOTOELECTRON SPECTROSCOPY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0E1PAyEQBmBiNLFWD_4DEk-abOVj2e1600bbJk160YsXAixYmi2sQE3676W2Se-eCOFhZt4B4BajEUYVfcSjsmGkLNkZGGBU1wXFeHwOBgghWlQNw5fgKsZ1vjJC6QC4F-9jgtseppWGutMqBatEB3sdjA8b4ZSG3sC5m4pPt8zKOmhst4EpCBdtTD5EKHfQuqhDsu4LCge3XX79o8d_TzPYiZ0O1-DCiC7qm-M5BB9vr--TWbFYTueT50WhKGOpaExNBGkrJkqpUdkKjWRLZCORZG3dYFaRUiMjqxbTirWNMrWQmo0bxCSqctQhuDvUzeEsj8omrVbKO5fzcUJYg2pMT6oP_nurY-Jrvw0uD8YJJniMKszGWd0flAo-xqAN74PdiLDjGPH90jnmx6Vn-3Cw-5YiWe_-h398OEHet4b-AgU6j80</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Abliz, Ablat</creator><creator>Wang, Jingli</creator><creator>Xu, Lei</creator><creator>Wan, Da</creator><creator>Liao, Lei</creator><creator>Ye, Cong</creator><creator>Liu, Chuansheng</creator><creator>Jiang, Changzhong</creator><creator>Chen, Huipeng</creator><creator>Guo, Tailiang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></search><sort><creationdate>20160523</creationdate><title>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</title><author>Abliz, Ablat ; Wang, Jingli ; Xu, Lei ; Wan, Da ; Liao, Lei ; Ye, Cong ; Liu, Chuansheng ; Jiang, Changzhong ; Chen, Huipeng ; Guo, Tailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ABUNDANCE</topic><topic>Applied physics</topic><topic>Bilayers</topic><topic>Carrier density</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DENSITY</topic><topic>ELECTRIC POTENTIAL</topic><topic>ELECTRICAL PROPERTIES</topic><topic>Electron transport</topic><topic>LAYERS</topic><topic>OXIDES</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>STRESSES</topic><topic>Thin film transistors</topic><topic>THIN FILMS</topic><topic>Threshold voltage</topic><topic>TRANSISTORS</topic><topic>TRAPS</topic><topic>X-RAY PHOTOELECTRON SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abliz, Ablat</creatorcontrib><creatorcontrib>Wang, Jingli</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Wan, Da</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><creatorcontrib>Liu, Chuansheng</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abliz, Ablat</au><au>Wang, Jingli</au><au>Xu, Lei</au><au>Wan, Da</au><au>Liao, Lei</au><au>Ye, Cong</au><au>Liu, Chuansheng</au><au>Jiang, Changzhong</au><au>Chen, Huipeng</au><au>Guo, Tailiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</atitle><jtitle>Applied physics letters</jtitle><date>2016-05-23</date><risdate>2016</risdate><volume>108</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952445</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-05, Vol.108 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2121806158
source AIP Journals Complete; Alma/SFX Local Collection
subjects ABUNDANCE
Applied physics
Bilayers
Carrier density
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DENSITY
ELECTRIC POTENTIAL
ELECTRICAL PROPERTIES
Electron transport
LAYERS
OXIDES
Resistance
Semiconductor devices
STRESSES
Thin film transistors
THIN FILMS
Threshold voltage
TRANSISTORS
TRAPS
X-RAY PHOTOELECTRON SPECTROSCOPY
title Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boost%20up%20the%20electrical%20performance%20of%20InGaZnO%20thin%20film%20transistors%20by%20inserting%20an%20ultrathin%20InGaZnO:H%20layer&rft.jtitle=Applied%20physics%20letters&rft.au=Abliz,%20Ablat&rft.date=2016-05-23&rft.volume=108&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4952445&rft_dat=%3Cproquest_cross%3E2121806158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121806158&rft_id=info:pmid/&rfr_iscdi=true