Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer
This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-05, Vol.108 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 108 |
creator | Abliz, Ablat Wang, Jingli Xu, Lei Wan, Da Liao, Lei Ye, Cong Liu, Chuansheng Jiang, Changzhong Chen, Huipeng Guo, Tailiang |
description | This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs. |
doi_str_mv | 10.1063/1.4952445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121806158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121806158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</originalsourceid><addsrcrecordid>eNqd0E1PAyEQBmBiNLFWD_4DEk-abOVj2e1600bbJk160YsXAixYmi2sQE3676W2Se-eCOFhZt4B4BajEUYVfcSjsmGkLNkZGGBU1wXFeHwOBgghWlQNw5fgKsZ1vjJC6QC4F-9jgtseppWGutMqBatEB3sdjA8b4ZSG3sC5m4pPt8zKOmhst4EpCBdtTD5EKHfQuqhDsu4LCge3XX79o8d_TzPYiZ0O1-DCiC7qm-M5BB9vr--TWbFYTueT50WhKGOpaExNBGkrJkqpUdkKjWRLZCORZG3dYFaRUiMjqxbTirWNMrWQmo0bxCSqctQhuDvUzeEsj8omrVbKO5fzcUJYg2pMT6oP_nurY-Jrvw0uD8YJJniMKszGWd0flAo-xqAN74PdiLDjGPH90jnmx6Vn-3Cw-5YiWe_-h398OEHet4b-AgU6j80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121806158</pqid></control><display><type>article</type><title>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Abliz, Ablat ; Wang, Jingli ; Xu, Lei ; Wan, Da ; Liao, Lei ; Ye, Cong ; Liu, Chuansheng ; Jiang, Changzhong ; Chen, Huipeng ; Guo, Tailiang</creator><creatorcontrib>Abliz, Ablat ; Wang, Jingli ; Xu, Lei ; Wan, Da ; Liao, Lei ; Ye, Cong ; Liu, Chuansheng ; Jiang, Changzhong ; Chen, Huipeng ; Guo, Tailiang</creatorcontrib><description>This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4952445</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ABUNDANCE ; Applied physics ; Bilayers ; Carrier density ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DENSITY ; ELECTRIC POTENTIAL ; ELECTRICAL PROPERTIES ; Electron transport ; LAYERS ; OXIDES ; Resistance ; Semiconductor devices ; STRESSES ; Thin film transistors ; THIN FILMS ; Threshold voltage ; TRANSISTORS ; TRAPS ; X-RAY PHOTOELECTRON SPECTROSCOPY</subject><ispartof>Applied physics letters, 2016-05, Vol.108 (21)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</citedby><cites>FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</cites><orcidid>0000-0003-1706-3174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4952445$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22590713$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abliz, Ablat</creatorcontrib><creatorcontrib>Wang, Jingli</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Wan, Da</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><creatorcontrib>Liu, Chuansheng</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><title>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</title><title>Applied physics letters</title><description>This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.</description><subject>ABUNDANCE</subject><subject>Applied physics</subject><subject>Bilayers</subject><subject>Carrier density</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DENSITY</subject><subject>ELECTRIC POTENTIAL</subject><subject>ELECTRICAL PROPERTIES</subject><subject>Electron transport</subject><subject>LAYERS</subject><subject>OXIDES</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>STRESSES</subject><subject>Thin film transistors</subject><subject>THIN FILMS</subject><subject>Threshold voltage</subject><subject>TRANSISTORS</subject><subject>TRAPS</subject><subject>X-RAY PHOTOELECTRON SPECTROSCOPY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0E1PAyEQBmBiNLFWD_4DEk-abOVj2e1600bbJk160YsXAixYmi2sQE3676W2Se-eCOFhZt4B4BajEUYVfcSjsmGkLNkZGGBU1wXFeHwOBgghWlQNw5fgKsZ1vjJC6QC4F-9jgtseppWGutMqBatEB3sdjA8b4ZSG3sC5m4pPt8zKOmhst4EpCBdtTD5EKHfQuqhDsu4LCge3XX79o8d_TzPYiZ0O1-DCiC7qm-M5BB9vr--TWbFYTueT50WhKGOpaExNBGkrJkqpUdkKjWRLZCORZG3dYFaRUiMjqxbTirWNMrWQmo0bxCSqctQhuDvUzeEsj8omrVbKO5fzcUJYg2pMT6oP_nurY-Jrvw0uD8YJJniMKszGWd0flAo-xqAN74PdiLDjGPH90jnmx6Vn-3Cw-5YiWe_-h398OEHet4b-AgU6j80</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Abliz, Ablat</creator><creator>Wang, Jingli</creator><creator>Xu, Lei</creator><creator>Wan, Da</creator><creator>Liao, Lei</creator><creator>Ye, Cong</creator><creator>Liu, Chuansheng</creator><creator>Jiang, Changzhong</creator><creator>Chen, Huipeng</creator><creator>Guo, Tailiang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></search><sort><creationdate>20160523</creationdate><title>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</title><author>Abliz, Ablat ; Wang, Jingli ; Xu, Lei ; Wan, Da ; Liao, Lei ; Ye, Cong ; Liu, Chuansheng ; Jiang, Changzhong ; Chen, Huipeng ; Guo, Tailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9f72a2d65a4be04dae0bd2b9b0b5d7915624e0fb6d1365d9cf7abe58905b06003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ABUNDANCE</topic><topic>Applied physics</topic><topic>Bilayers</topic><topic>Carrier density</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DENSITY</topic><topic>ELECTRIC POTENTIAL</topic><topic>ELECTRICAL PROPERTIES</topic><topic>Electron transport</topic><topic>LAYERS</topic><topic>OXIDES</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>STRESSES</topic><topic>Thin film transistors</topic><topic>THIN FILMS</topic><topic>Threshold voltage</topic><topic>TRANSISTORS</topic><topic>TRAPS</topic><topic>X-RAY PHOTOELECTRON SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abliz, Ablat</creatorcontrib><creatorcontrib>Wang, Jingli</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Wan, Da</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><creatorcontrib>Liu, Chuansheng</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abliz, Ablat</au><au>Wang, Jingli</au><au>Xu, Lei</au><au>Wan, Da</au><au>Liao, Lei</au><au>Ye, Cong</au><au>Liu, Chuansheng</au><au>Jiang, Changzhong</au><au>Chen, Huipeng</au><au>Guo, Tailiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer</atitle><jtitle>Applied physics letters</jtitle><date>2016-05-23</date><risdate>2016</risdate><volume>108</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952445</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-05, Vol.108 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2121806158 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ABUNDANCE Applied physics Bilayers Carrier density CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DENSITY ELECTRIC POTENTIAL ELECTRICAL PROPERTIES Electron transport LAYERS OXIDES Resistance Semiconductor devices STRESSES Thin film transistors THIN FILMS Threshold voltage TRANSISTORS TRAPS X-RAY PHOTOELECTRON SPECTROSCOPY |
title | Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boost%20up%20the%20electrical%20performance%20of%20InGaZnO%20thin%20film%20transistors%20by%20inserting%20an%20ultrathin%20InGaZnO:H%20layer&rft.jtitle=Applied%20physics%20letters&rft.au=Abliz,%20Ablat&rft.date=2016-05-23&rft.volume=108&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4952445&rft_dat=%3Cproquest_cross%3E2121806158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121806158&rft_id=info:pmid/&rfr_iscdi=true |