Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms

Nine doublet Λ–S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-05, Vol.144 (18), p.184302-184302
Hauptverfasser: Fu, Mingkai, Ma, Haitao, Cao, Jianwei, Bian, Wensheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184302
container_issue 18
container_start_page 184302
container_title The Journal of chemical physics
container_volume 144
creator Fu, Mingkai
Ma, Haitao
Cao, Jianwei
Bian, Wensheng
description Nine doublet Λ–S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck–Condon factors and vibrational branching ratios of the A 2 Π 1 / 2 ( ν ′ ) ← X 2 Σ 1 / 2 + ( ν ) transition are highly diagonally distributed and the evaluated radiative lifetime for the A2Π1/2(ν′ = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.
doi_str_mv 10.1063/1.4948631
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2121783615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121783615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-5b001369744484ee926de348ff33c0e08de6581dee61ff5ec8ab287f8189a1903</originalsourceid><addsrcrecordid>eNp9kd9qVDEQxoModlu98AUk4I0KpyYn2ZzEOymtChVv9Dpkkzk2JSdZ86d038THNcuuCoJeDcz8vo-Z-RB6Rsk5JYK9oedccSkYfYBWlEg1TEKRh2hFyEgHJYg4Qael3BJC6DTyx-hknOik-KRW6MflfYVY_B3gegMpQ_XWBFxqczucIoYAtuYU992ww3BvfQXX56ZCwWnGvW99W_CSYrI3IWXv4C3-lLquBZNxMAUytikFH79hEx3e5uSarb67d30LNRubgsMHdQRsalrKE_RoNqHA02M9Q1-vLr9cfBiuP7__ePHuerBMsjqsN_0oJtTEOZccQI3CAeNynhmzBIh0INaSOgBB53kNVprNKKdZUqkMVYSdoZcH377W9wal6sUXCyGYCKkVTSepuBJsFB198Rd6m1qOfTs90rGDTNB1p14dKJtTKRlmvc1-MXmnKdH7uDTVx7g6-_zo2DYLuN_kr3w68PoAlP53s__Zf93-Cd-l_AfUWzezn283row</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121783615</pqid></control><display><type>article</type><title>Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fu, Mingkai ; Ma, Haitao ; Cao, Jianwei ; Bian, Wensheng</creator><creatorcontrib>Fu, Mingkai ; Ma, Haitao ; Cao, Jianwei ; Bian, Wensheng</creatorcontrib><description>Nine doublet Λ–S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck–Condon factors and vibrational branching ratios of the A 2 Π 1 / 2 ( ν ′ ) ← X 2 Σ 1 / 2 + ( ν ) transition are highly diagonally distributed and the evaluated radiative lifetime for the A2Π1/2(ν′ = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4948631</identifier><identifier>PMID: 27179479</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Brittleness ; Calcium ; Chlorine ; Configuration interaction ; Cooling ; Cooling effects ; Coupling (molecular) ; Ionization ; Laser cooling ; Lasers ; Mathematical analysis ; Photodissociation ; Radiative lifetime ; Service life assessment ; Spin-orbit interactions</subject><ispartof>The Journal of chemical physics, 2016-05, Vol.144 (18), p.184302-184302</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-5b001369744484ee926de348ff33c0e08de6581dee61ff5ec8ab287f8189a1903</citedby><cites>FETCH-LOGICAL-c383t-5b001369744484ee926de348ff33c0e08de6581dee61ff5ec8ab287f8189a1903</cites><orcidid>0000-0002-6597-3052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4948631$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27179479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Mingkai</creatorcontrib><creatorcontrib>Ma, Haitao</creatorcontrib><creatorcontrib>Cao, Jianwei</creatorcontrib><creatorcontrib>Bian, Wensheng</creatorcontrib><title>Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Nine doublet Λ–S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck–Condon factors and vibrational branching ratios of the A 2 Π 1 / 2 ( ν ′ ) ← X 2 Σ 1 / 2 + ( ν ) transition are highly diagonally distributed and the evaluated radiative lifetime for the A2Π1/2(ν′ = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.</description><subject>Brittleness</subject><subject>Calcium</subject><subject>Chlorine</subject><subject>Configuration interaction</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Coupling (molecular)</subject><subject>Ionization</subject><subject>Laser cooling</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Photodissociation</subject><subject>Radiative lifetime</subject><subject>Service life assessment</subject><subject>Spin-orbit interactions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kd9qVDEQxoModlu98AUk4I0KpyYn2ZzEOymtChVv9Dpkkzk2JSdZ86d038THNcuuCoJeDcz8vo-Z-RB6Rsk5JYK9oedccSkYfYBWlEg1TEKRh2hFyEgHJYg4Qael3BJC6DTyx-hknOik-KRW6MflfYVY_B3gegMpQ_XWBFxqczucIoYAtuYU992ww3BvfQXX56ZCwWnGvW99W_CSYrI3IWXv4C3-lLquBZNxMAUytikFH79hEx3e5uSarb67d30LNRubgsMHdQRsalrKE_RoNqHA02M9Q1-vLr9cfBiuP7__ePHuerBMsjqsN_0oJtTEOZccQI3CAeNynhmzBIh0INaSOgBB53kNVprNKKdZUqkMVYSdoZcH377W9wal6sUXCyGYCKkVTSepuBJsFB198Rd6m1qOfTs90rGDTNB1p14dKJtTKRlmvc1-MXmnKdH7uDTVx7g6-_zo2DYLuN_kr3w68PoAlP53s__Zf93-Cd-l_AfUWzezn283row</recordid><startdate>20160514</startdate><enddate>20160514</enddate><creator>Fu, Mingkai</creator><creator>Ma, Haitao</creator><creator>Cao, Jianwei</creator><creator>Bian, Wensheng</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6597-3052</orcidid></search><sort><creationdate>20160514</creationdate><title>Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms</title><author>Fu, Mingkai ; Ma, Haitao ; Cao, Jianwei ; Bian, Wensheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-5b001369744484ee926de348ff33c0e08de6581dee61ff5ec8ab287f8189a1903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brittleness</topic><topic>Calcium</topic><topic>Chlorine</topic><topic>Configuration interaction</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Coupling (molecular)</topic><topic>Ionization</topic><topic>Laser cooling</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Photodissociation</topic><topic>Radiative lifetime</topic><topic>Service life assessment</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Mingkai</creatorcontrib><creatorcontrib>Ma, Haitao</creatorcontrib><creatorcontrib>Cao, Jianwei</creatorcontrib><creatorcontrib>Bian, Wensheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Mingkai</au><au>Ma, Haitao</au><au>Cao, Jianwei</au><au>Bian, Wensheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-05-14</date><risdate>2016</risdate><volume>144</volume><issue>18</issue><spage>184302</spage><epage>184302</epage><pages>184302-184302</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Nine doublet Λ–S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck–Condon factors and vibrational branching ratios of the A 2 Π 1 / 2 ( ν ′ ) ← X 2 Σ 1 / 2 + ( ν ) transition are highly diagonally distributed and the evaluated radiative lifetime for the A2Π1/2(ν′ = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27179479</pmid><doi>10.1063/1.4948631</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6597-3052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-05, Vol.144 (18), p.184302-184302
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2121783615
source AIP Journals Complete; Alma/SFX Local Collection
subjects Brittleness
Calcium
Chlorine
Configuration interaction
Cooling
Cooling effects
Coupling (molecular)
Ionization
Laser cooling
Lasers
Mathematical analysis
Photodissociation
Radiative lifetime
Service life assessment
Spin-orbit interactions
title Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extensive%20theoretical%20study%20on%20electronically%20excited%20states%20of%20calcium%20monochloride:%20Molecular%20laser%20cooling%20and%20production%20of%20ultracold%20chlorine%20atoms&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Fu,%20Mingkai&rft.date=2016-05-14&rft.volume=144&rft.issue=18&rft.spage=184302&rft.epage=184302&rft.pages=184302-184302&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4948631&rft_dat=%3Cproquest_pubme%3E2121783615%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121783615&rft_id=info:pmid/27179479&rfr_iscdi=true