Strain relaxation in semipolar ( 20 2 ¯ 1 ) InGaN grown by plasma assisted molecular beam epitaxy
Strain relaxation in semipolar ( 20 2 ¯ 1 ) InGaN layers grown by plasma assisted molecular beam epitaxy (PAMBE) was investigated with high-resolution X-ray diffraction (XRD) reciprocal space mapping, cathodoluminescence (CL), fluorescent light microscopy (FLM), and atomic force microscopy. We find...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-05, Vol.119 (18) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 119 |
creator | Sawicka, M. Kryśko, M. Muziol, G. Turski, H. Siekacz, M. Wolny, P. Smalc-Koziorowska, J. Skierbiszewski, C. |
description | Strain relaxation in semipolar
(
20
2
¯
1
)
InGaN layers grown by plasma assisted molecular beam epitaxy (PAMBE) was investigated with high-resolution X-ray diffraction (XRD) reciprocal space mapping, cathodoluminescence (CL), fluorescent light microscopy (FLM), and atomic force microscopy. We find that XRD detects lattice relaxation much later than its actual onset occurs. Other techniques used in this study allowed to detect local footprints of plastic relaxation before it was evidenced by XRD: at the initial stages of strain relaxation, we observed changes in layer morphology, i.e., formation of short trench line segments on the surface along the ⟨
11
2
¯
0
⟩ direction as well as dark lines in CL and FLM. The misfit dislocations formation and glide were observed in two slip systems: initially in basal slip system ⟨
11
2
¯
0
⟩
{
0001
}
and for larger amount of strain in non-basal, prismatic slip system
⟨
11
2
¯
0
⟩
{
1
1
¯
00
}
. Experimentally determined critical thickness for InGaN layers grown by PAMBE on semipolar
(
20
2
¯
1
)
bulk GaN substrates agrees well with literature data obtained with metalorganic vapor phase epitaxy and follows the Matthews-Blakeslee model prediction. We discuss the impact of substrate structural properties on the strain relaxation onset and mechanisms. We also describe the layer morphology and surface roughness evolution related to the increasing In content and strain relaxation of the semipolar
(
20
2
¯
1
)
InGaN layers. |
doi_str_mv | 10.1063/1.4948963 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121783586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121783586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-d56cb61e4d4f15d568b0a835fb30af62d984ed2c6f9db4bd22d64b22b61493b3</originalsourceid><addsrcrecordid>eNp9kM9KAzEYxIMoWKsH3yDgxQpb82_T5ChFa6Howd5DssnKlt3Nmmy1fSrfwSczpUUPgqePgd_M8A0AlxiNMeL0Fo-ZZEJyegQGGAmZTfIcHYMBQgRnQk7kKTiLcYUQxoLKATAvfdBVC4Or9Ub3lW9hUtE1VedrHeA1JAgS-PUJMRzBeTvTT_A1-I8Wmi3sah0bDXWMVeydhY2vXbHe2YzTDXRd1evN9hyclLqO7uJwh2D5cL-cPmaL59l8erfICsJIn9mcF4ZjxywrcZ6UMEgLmpeGIl1yYqVgzpKCl9IaZiwhljNDSPIwSQ0dgqt9bBf829rFXq38OrSpURFM8CRFCZ6o0Z4qgo8xuFJ1oWp02CqM1G5BhdVhwcTe7NlYpEd22_zA7z78gqqz5X_w3-RvoqR-TA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121783586</pqid></control><display><type>article</type><title>Strain relaxation in semipolar ( 20 2 ¯ 1 ) InGaN grown by plasma assisted molecular beam epitaxy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sawicka, M. ; Kryśko, M. ; Muziol, G. ; Turski, H. ; Siekacz, M. ; Wolny, P. ; Smalc-Koziorowska, J. ; Skierbiszewski, C.</creator><creatorcontrib>Sawicka, M. ; Kryśko, M. ; Muziol, G. ; Turski, H. ; Siekacz, M. ; Wolny, P. ; Smalc-Koziorowska, J. ; Skierbiszewski, C.</creatorcontrib><description>Strain relaxation in semipolar
(
20
2
¯
1
)
InGaN layers grown by plasma assisted molecular beam epitaxy (PAMBE) was investigated with high-resolution X-ray diffraction (XRD) reciprocal space mapping, cathodoluminescence (CL), fluorescent light microscopy (FLM), and atomic force microscopy. We find that XRD detects lattice relaxation much later than its actual onset occurs. Other techniques used in this study allowed to detect local footprints of plastic relaxation before it was evidenced by XRD: at the initial stages of strain relaxation, we observed changes in layer morphology, i.e., formation of short trench line segments on the surface along the ⟨
11
2
¯
0
⟩ direction as well as dark lines in CL and FLM. The misfit dislocations formation and glide were observed in two slip systems: initially in basal slip system ⟨
11
2
¯
0
⟩
{
0001
}
and for larger amount of strain in non-basal, prismatic slip system
⟨
11
2
¯
0
⟩
{
1
1
¯
00
}
. Experimentally determined critical thickness for InGaN layers grown by PAMBE on semipolar
(
20
2
¯
1
)
bulk GaN substrates agrees well with literature data obtained with metalorganic vapor phase epitaxy and follows the Matthews-Blakeslee model prediction. We discuss the impact of substrate structural properties on the strain relaxation onset and mechanisms. We also describe the layer morphology and surface roughness evolution related to the increasing In content and strain relaxation of the semipolar
(
20
2
¯
1
)
InGaN layers.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4948963</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Cathodoluminescence ; Dislocations ; Epitaxial growth ; Fluorescence ; Light diffraction ; Metalorganic chemical vapor deposition ; Microscopy ; Molecular beam epitaxy ; Morphology ; Slip ; Strain relaxation ; Substrates ; Surface roughness ; Thickness ; X-ray diffraction</subject><ispartof>Journal of applied physics, 2016-05, Vol.119 (18)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-d56cb61e4d4f15d568b0a835fb30af62d984ed2c6f9db4bd22d64b22b61493b3</citedby><cites>FETCH-LOGICAL-c242t-d56cb61e4d4f15d568b0a835fb30af62d984ed2c6f9db4bd22d64b22b61493b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4948963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Sawicka, M.</creatorcontrib><creatorcontrib>Kryśko, M.</creatorcontrib><creatorcontrib>Muziol, G.</creatorcontrib><creatorcontrib>Turski, H.</creatorcontrib><creatorcontrib>Siekacz, M.</creatorcontrib><creatorcontrib>Wolny, P.</creatorcontrib><creatorcontrib>Smalc-Koziorowska, J.</creatorcontrib><creatorcontrib>Skierbiszewski, C.</creatorcontrib><title>Strain relaxation in semipolar ( 20 2 ¯ 1 ) InGaN grown by plasma assisted molecular beam epitaxy</title><title>Journal of applied physics</title><description>Strain relaxation in semipolar
(
20
2
¯
1
)
InGaN layers grown by plasma assisted molecular beam epitaxy (PAMBE) was investigated with high-resolution X-ray diffraction (XRD) reciprocal space mapping, cathodoluminescence (CL), fluorescent light microscopy (FLM), and atomic force microscopy. We find that XRD detects lattice relaxation much later than its actual onset occurs. Other techniques used in this study allowed to detect local footprints of plastic relaxation before it was evidenced by XRD: at the initial stages of strain relaxation, we observed changes in layer morphology, i.e., formation of short trench line segments on the surface along the ⟨
11
2
¯
0
⟩ direction as well as dark lines in CL and FLM. The misfit dislocations formation and glide were observed in two slip systems: initially in basal slip system ⟨
11
2
¯
0
⟩
{
0001
}
and for larger amount of strain in non-basal, prismatic slip system
⟨
11
2
¯
0
⟩
{
1
1
¯
00
}
. Experimentally determined critical thickness for InGaN layers grown by PAMBE on semipolar
(
20
2
¯
1
)
bulk GaN substrates agrees well with literature data obtained with metalorganic vapor phase epitaxy and follows the Matthews-Blakeslee model prediction. We discuss the impact of substrate structural properties on the strain relaxation onset and mechanisms. We also describe the layer morphology and surface roughness evolution related to the increasing In content and strain relaxation of the semipolar
(
20
2
¯
1
)
InGaN layers.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Cathodoluminescence</subject><subject>Dislocations</subject><subject>Epitaxial growth</subject><subject>Fluorescence</subject><subject>Light diffraction</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Microscopy</subject><subject>Molecular beam epitaxy</subject><subject>Morphology</subject><subject>Slip</subject><subject>Strain relaxation</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Thickness</subject><subject>X-ray diffraction</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEYxIMoWKsH3yDgxQpb82_T5ChFa6Howd5DssnKlt3Nmmy1fSrfwSczpUUPgqePgd_M8A0AlxiNMeL0Fo-ZZEJyegQGGAmZTfIcHYMBQgRnQk7kKTiLcYUQxoLKATAvfdBVC4Or9Ub3lW9hUtE1VedrHeA1JAgS-PUJMRzBeTvTT_A1-I8Wmi3sah0bDXWMVeydhY2vXbHe2YzTDXRd1evN9hyclLqO7uJwh2D5cL-cPmaL59l8erfICsJIn9mcF4ZjxywrcZ6UMEgLmpeGIl1yYqVgzpKCl9IaZiwhljNDSPIwSQ0dgqt9bBf829rFXq38OrSpURFM8CRFCZ6o0Z4qgo8xuFJ1oWp02CqM1G5BhdVhwcTe7NlYpEd22_zA7z78gqqz5X_w3-RvoqR-TA</recordid><startdate>20160514</startdate><enddate>20160514</enddate><creator>Sawicka, M.</creator><creator>Kryśko, M.</creator><creator>Muziol, G.</creator><creator>Turski, H.</creator><creator>Siekacz, M.</creator><creator>Wolny, P.</creator><creator>Smalc-Koziorowska, J.</creator><creator>Skierbiszewski, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160514</creationdate><title>Strain relaxation in semipolar ( 20 2 ¯ 1 ) InGaN grown by plasma assisted molecular beam epitaxy</title><author>Sawicka, M. ; Kryśko, M. ; Muziol, G. ; Turski, H. ; Siekacz, M. ; Wolny, P. ; Smalc-Koziorowska, J. ; Skierbiszewski, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-d56cb61e4d4f15d568b0a835fb30af62d984ed2c6f9db4bd22d64b22b61493b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Cathodoluminescence</topic><topic>Dislocations</topic><topic>Epitaxial growth</topic><topic>Fluorescence</topic><topic>Light diffraction</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Microscopy</topic><topic>Molecular beam epitaxy</topic><topic>Morphology</topic><topic>Slip</topic><topic>Strain relaxation</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Thickness</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawicka, M.</creatorcontrib><creatorcontrib>Kryśko, M.</creatorcontrib><creatorcontrib>Muziol, G.</creatorcontrib><creatorcontrib>Turski, H.</creatorcontrib><creatorcontrib>Siekacz, M.</creatorcontrib><creatorcontrib>Wolny, P.</creatorcontrib><creatorcontrib>Smalc-Koziorowska, J.</creatorcontrib><creatorcontrib>Skierbiszewski, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawicka, M.</au><au>Kryśko, M.</au><au>Muziol, G.</au><au>Turski, H.</au><au>Siekacz, M.</au><au>Wolny, P.</au><au>Smalc-Koziorowska, J.</au><au>Skierbiszewski, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain relaxation in semipolar ( 20 2 ¯ 1 ) InGaN grown by plasma assisted molecular beam epitaxy</atitle><jtitle>Journal of applied physics</jtitle><date>2016-05-14</date><risdate>2016</risdate><volume>119</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Strain relaxation in semipolar
(
20
2
¯
1
)
InGaN layers grown by plasma assisted molecular beam epitaxy (PAMBE) was investigated with high-resolution X-ray diffraction (XRD) reciprocal space mapping, cathodoluminescence (CL), fluorescent light microscopy (FLM), and atomic force microscopy. We find that XRD detects lattice relaxation much later than its actual onset occurs. Other techniques used in this study allowed to detect local footprints of plastic relaxation before it was evidenced by XRD: at the initial stages of strain relaxation, we observed changes in layer morphology, i.e., formation of short trench line segments on the surface along the ⟨
11
2
¯
0
⟩ direction as well as dark lines in CL and FLM. The misfit dislocations formation and glide were observed in two slip systems: initially in basal slip system ⟨
11
2
¯
0
⟩
{
0001
}
and for larger amount of strain in non-basal, prismatic slip system
⟨
11
2
¯
0
⟩
{
1
1
¯
00
}
. Experimentally determined critical thickness for InGaN layers grown by PAMBE on semipolar
(
20
2
¯
1
)
bulk GaN substrates agrees well with literature data obtained with metalorganic vapor phase epitaxy and follows the Matthews-Blakeslee model prediction. We discuss the impact of substrate structural properties on the strain relaxation onset and mechanisms. We also describe the layer morphology and surface roughness evolution related to the increasing In content and strain relaxation of the semipolar
(
20
2
¯
1
)
InGaN layers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4948963</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-05, Vol.119 (18) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2121783586 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Atomic force microscopy Cathodoluminescence Dislocations Epitaxial growth Fluorescence Light diffraction Metalorganic chemical vapor deposition Microscopy Molecular beam epitaxy Morphology Slip Strain relaxation Substrates Surface roughness Thickness X-ray diffraction |
title | Strain relaxation in semipolar ( 20 2 ¯ 1 ) InGaN grown by plasma assisted molecular beam epitaxy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20relaxation%20in%20semipolar%20(%2020%202%20%C2%AF%201%20)%20InGaN%20grown%20by%20plasma%20assisted%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Sawicka,%20M.&rft.date=2016-05-14&rft.volume=119&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4948963&rft_dat=%3Cproquest_cross%3E2121783586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121783586&rft_id=info:pmid/&rfr_iscdi=true |