Exits in order: How crowding affects particle lifetimes
Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lif...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-06, Vol.144 (24), p.244107-244107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244107 |
---|---|
container_issue | 24 |
container_start_page | 244107 |
container_title | The Journal of chemical physics |
container_volume | 144 |
creator | Penington, Catherine J. Baker, Ruth E. Simpson, Matthew J. |
description | Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked. |
doi_str_mv | 10.1063/1.4953913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2121728420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801429575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgitbLwheQATcqjCaZNBd3It5AcKPrkElONDKd1GRq9e2NtNaF4CqLfPznnB-hfYJPCebNGTllatwo0qyhEcFS1YIrvI5GGFNSK475FtrO-RVjTARlm2iLioYrpsQIiauPMOQq9FVMDtJ5dRvnlU1x7kL_XBnvwZbvqUlDsB1UXfAwhAnkXbThTZdhb_nuoKfrq8fL2_r-4ebu8uK-tozxoVbgmQAlqHFOCmwJiDHzLeGEtdCAMtRIyb1sJXFYcufLZq5plXB2LMZYNjvocJEb8xB0tmEA-2Jj35e9NKVc8HJkUUcLNU3xbQZ50JOQLXSd6SHOsiYSE0ZVifwNXNHXOEt9uUFTQks_klFc1PFClSpyTuD1NIWJSZ-aYP3duSZ62XmxB8vEWTsBt5I_JRdwsgDf65shxH5l3mP6TdJT5__Df0d_AWIxlM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121728420</pqid></control><display><type>article</type><title>Exits in order: How crowding affects particle lifetimes</title><source>MEDLINE</source><source>Scitation (American Institute of Physics)</source><source>Alma/SFX Local Collection</source><creator>Penington, Catherine J. ; Baker, Ruth E. ; Simpson, Matthew J.</creator><creatorcontrib>Penington, Catherine J. ; Baker, Ruth E. ; Simpson, Matthew J.</creatorcontrib><description>Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4953913</identifier><identifier>PMID: 27369497</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Biophysics ; Computer Simulation ; Crowding ; DIFFUSION ; Economic models ; GRAPH THEORY ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Lifetime ; Mathematical analysis ; Models, Chemical ; PARTICLES ; Random walk ; Random walk theory ; SIMULATION ; STANDARD MODEL ; Standard model (particle physics) ; Time Factors</subject><ispartof>The Journal of chemical physics, 2016-06, Vol.144 (24), p.244107-244107</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</citedby><cites>FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</cites><orcidid>0000-0002-9344-0122 ; 0000-0002-6304-9333 ; 0000-0001-6254-313X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4953913$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27369497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22676002$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Penington, Catherine J.</creatorcontrib><creatorcontrib>Baker, Ruth E.</creatorcontrib><creatorcontrib>Simpson, Matthew J.</creatorcontrib><title>Exits in order: How crowding affects particle lifetimes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.</description><subject>Algorithms</subject><subject>Biophysics</subject><subject>Computer Simulation</subject><subject>Crowding</subject><subject>DIFFUSION</subject><subject>Economic models</subject><subject>GRAPH THEORY</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Lifetime</subject><subject>Mathematical analysis</subject><subject>Models, Chemical</subject><subject>PARTICLES</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>SIMULATION</subject><subject>STANDARD MODEL</subject><subject>Standard model (particle physics)</subject><subject>Time Factors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKAzEUBuAgitbLwheQATcqjCaZNBd3It5AcKPrkElONDKd1GRq9e2NtNaF4CqLfPznnB-hfYJPCebNGTllatwo0qyhEcFS1YIrvI5GGFNSK475FtrO-RVjTARlm2iLioYrpsQIiauPMOQq9FVMDtJ5dRvnlU1x7kL_XBnvwZbvqUlDsB1UXfAwhAnkXbThTZdhb_nuoKfrq8fL2_r-4ebu8uK-tozxoVbgmQAlqHFOCmwJiDHzLeGEtdCAMtRIyb1sJXFYcufLZq5plXB2LMZYNjvocJEb8xB0tmEA-2Jj35e9NKVc8HJkUUcLNU3xbQZ50JOQLXSd6SHOsiYSE0ZVifwNXNHXOEt9uUFTQks_klFc1PFClSpyTuD1NIWJSZ-aYP3duSZ62XmxB8vEWTsBt5I_JRdwsgDf65shxH5l3mP6TdJT5__Df0d_AWIxlM4</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Penington, Catherine J.</creator><creator>Baker, Ruth E.</creator><creator>Simpson, Matthew J.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9344-0122</orcidid><orcidid>https://orcid.org/0000-0002-6304-9333</orcidid><orcidid>https://orcid.org/0000-0001-6254-313X</orcidid></search><sort><creationdate>20160628</creationdate><title>Exits in order: How crowding affects particle lifetimes</title><author>Penington, Catherine J. ; Baker, Ruth E. ; Simpson, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biophysics</topic><topic>Computer Simulation</topic><topic>Crowding</topic><topic>DIFFUSION</topic><topic>Economic models</topic><topic>GRAPH THEORY</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Lifetime</topic><topic>Mathematical analysis</topic><topic>Models, Chemical</topic><topic>PARTICLES</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>SIMULATION</topic><topic>STANDARD MODEL</topic><topic>Standard model (particle physics)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penington, Catherine J.</creatorcontrib><creatorcontrib>Baker, Ruth E.</creatorcontrib><creatorcontrib>Simpson, Matthew J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penington, Catherine J.</au><au>Baker, Ruth E.</au><au>Simpson, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exits in order: How crowding affects particle lifetimes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-06-28</date><risdate>2016</risdate><volume>144</volume><issue>24</issue><spage>244107</spage><epage>244107</epage><pages>244107-244107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27369497</pmid><doi>10.1063/1.4953913</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9344-0122</orcidid><orcidid>https://orcid.org/0000-0002-6304-9333</orcidid><orcidid>https://orcid.org/0000-0001-6254-313X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-06, Vol.144 (24), p.244107-244107 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2121728420 |
source | MEDLINE; Scitation (American Institute of Physics); Alma/SFX Local Collection |
subjects | Algorithms Biophysics Computer Simulation Crowding DIFFUSION Economic models GRAPH THEORY INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Lifetime Mathematical analysis Models, Chemical PARTICLES Random walk Random walk theory SIMULATION STANDARD MODEL Standard model (particle physics) Time Factors |
title | Exits in order: How crowding affects particle lifetimes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exits%20in%20order:%20How%20crowding%20affects%20particle%20lifetimes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Penington,%20Catherine%20J.&rft.date=2016-06-28&rft.volume=144&rft.issue=24&rft.spage=244107&rft.epage=244107&rft.pages=244107-244107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4953913&rft_dat=%3Cproquest_pubme%3E1801429575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121728420&rft_id=info:pmid/27369497&rfr_iscdi=true |