Exits in order: How crowding affects particle lifetimes

Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-06, Vol.144 (24), p.244107-244107
Hauptverfasser: Penington, Catherine J., Baker, Ruth E., Simpson, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244107
container_issue 24
container_start_page 244107
container_title The Journal of chemical physics
container_volume 144
creator Penington, Catherine J.
Baker, Ruth E.
Simpson, Matthew J.
description Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.
doi_str_mv 10.1063/1.4953913
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2121728420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801429575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgitbLwheQATcqjCaZNBd3It5AcKPrkElONDKd1GRq9e2NtNaF4CqLfPznnB-hfYJPCebNGTllatwo0qyhEcFS1YIrvI5GGFNSK475FtrO-RVjTARlm2iLioYrpsQIiauPMOQq9FVMDtJ5dRvnlU1x7kL_XBnvwZbvqUlDsB1UXfAwhAnkXbThTZdhb_nuoKfrq8fL2_r-4ebu8uK-tozxoVbgmQAlqHFOCmwJiDHzLeGEtdCAMtRIyb1sJXFYcufLZq5plXB2LMZYNjvocJEb8xB0tmEA-2Jj35e9NKVc8HJkUUcLNU3xbQZ50JOQLXSd6SHOsiYSE0ZVifwNXNHXOEt9uUFTQks_klFc1PFClSpyTuD1NIWJSZ-aYP3duSZ62XmxB8vEWTsBt5I_JRdwsgDf65shxH5l3mP6TdJT5__Df0d_AWIxlM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121728420</pqid></control><display><type>article</type><title>Exits in order: How crowding affects particle lifetimes</title><source>MEDLINE</source><source>Scitation (American Institute of Physics)</source><source>Alma/SFX Local Collection</source><creator>Penington, Catherine J. ; Baker, Ruth E. ; Simpson, Matthew J.</creator><creatorcontrib>Penington, Catherine J. ; Baker, Ruth E. ; Simpson, Matthew J.</creatorcontrib><description>Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4953913</identifier><identifier>PMID: 27369497</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Biophysics ; Computer Simulation ; Crowding ; DIFFUSION ; Economic models ; GRAPH THEORY ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Lifetime ; Mathematical analysis ; Models, Chemical ; PARTICLES ; Random walk ; Random walk theory ; SIMULATION ; STANDARD MODEL ; Standard model (particle physics) ; Time Factors</subject><ispartof>The Journal of chemical physics, 2016-06, Vol.144 (24), p.244107-244107</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</citedby><cites>FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</cites><orcidid>0000-0002-9344-0122 ; 0000-0002-6304-9333 ; 0000-0001-6254-313X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4953913$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27369497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22676002$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Penington, Catherine J.</creatorcontrib><creatorcontrib>Baker, Ruth E.</creatorcontrib><creatorcontrib>Simpson, Matthew J.</creatorcontrib><title>Exits in order: How crowding affects particle lifetimes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.</description><subject>Algorithms</subject><subject>Biophysics</subject><subject>Computer Simulation</subject><subject>Crowding</subject><subject>DIFFUSION</subject><subject>Economic models</subject><subject>GRAPH THEORY</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Lifetime</subject><subject>Mathematical analysis</subject><subject>Models, Chemical</subject><subject>PARTICLES</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>SIMULATION</subject><subject>STANDARD MODEL</subject><subject>Standard model (particle physics)</subject><subject>Time Factors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKAzEUBuAgitbLwheQATcqjCaZNBd3It5AcKPrkElONDKd1GRq9e2NtNaF4CqLfPznnB-hfYJPCebNGTllatwo0qyhEcFS1YIrvI5GGFNSK475FtrO-RVjTARlm2iLioYrpsQIiauPMOQq9FVMDtJ5dRvnlU1x7kL_XBnvwZbvqUlDsB1UXfAwhAnkXbThTZdhb_nuoKfrq8fL2_r-4ebu8uK-tozxoVbgmQAlqHFOCmwJiDHzLeGEtdCAMtRIyb1sJXFYcufLZq5plXB2LMZYNjvocJEb8xB0tmEA-2Jj35e9NKVc8HJkUUcLNU3xbQZ50JOQLXSd6SHOsiYSE0ZVifwNXNHXOEt9uUFTQks_klFc1PFClSpyTuD1NIWJSZ-aYP3duSZ62XmxB8vEWTsBt5I_JRdwsgDf65shxH5l3mP6TdJT5__Df0d_AWIxlM4</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Penington, Catherine J.</creator><creator>Baker, Ruth E.</creator><creator>Simpson, Matthew J.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9344-0122</orcidid><orcidid>https://orcid.org/0000-0002-6304-9333</orcidid><orcidid>https://orcid.org/0000-0001-6254-313X</orcidid></search><sort><creationdate>20160628</creationdate><title>Exits in order: How crowding affects particle lifetimes</title><author>Penington, Catherine J. ; Baker, Ruth E. ; Simpson, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-9ef47e972add870c1e754fb1614be3e9a2a886f8b81d086df273d3b97dc575083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biophysics</topic><topic>Computer Simulation</topic><topic>Crowding</topic><topic>DIFFUSION</topic><topic>Economic models</topic><topic>GRAPH THEORY</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Lifetime</topic><topic>Mathematical analysis</topic><topic>Models, Chemical</topic><topic>PARTICLES</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>SIMULATION</topic><topic>STANDARD MODEL</topic><topic>Standard model (particle physics)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penington, Catherine J.</creatorcontrib><creatorcontrib>Baker, Ruth E.</creatorcontrib><creatorcontrib>Simpson, Matthew J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penington, Catherine J.</au><au>Baker, Ruth E.</au><au>Simpson, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exits in order: How crowding affects particle lifetimes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-06-28</date><risdate>2016</risdate><volume>144</volume><issue>24</issue><spage>244107</spage><epage>244107</epage><pages>244107-244107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27369497</pmid><doi>10.1063/1.4953913</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9344-0122</orcidid><orcidid>https://orcid.org/0000-0002-6304-9333</orcidid><orcidid>https://orcid.org/0000-0001-6254-313X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-06, Vol.144 (24), p.244107-244107
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2121728420
source MEDLINE; Scitation (American Institute of Physics); Alma/SFX Local Collection
subjects Algorithms
Biophysics
Computer Simulation
Crowding
DIFFUSION
Economic models
GRAPH THEORY
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Lifetime
Mathematical analysis
Models, Chemical
PARTICLES
Random walk
Random walk theory
SIMULATION
STANDARD MODEL
Standard model (particle physics)
Time Factors
title Exits in order: How crowding affects particle lifetimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exits%20in%20order:%20How%20crowding%20affects%20particle%20lifetimes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Penington,%20Catherine%20J.&rft.date=2016-06-28&rft.volume=144&rft.issue=24&rft.spage=244107&rft.epage=244107&rft.pages=244107-244107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4953913&rft_dat=%3Cproquest_pubme%3E1801429575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121728420&rft_id=info:pmid/27369497&rfr_iscdi=true