Photoexcited carrier trapping and recombination at Fe centers in GaN
Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-06, Vol.119 (21) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 119 |
creator | Uždavinys, T. K. Marcinkevičius, S. Leach, J. H. Evans, K. R. Look, D. C. |
description | Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole. |
doi_str_mv | 10.1063/1.4953219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2121718684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121718684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</originalsourceid><addsrcrecordid>eNqd0LlOAzEQBmALgUQ4Ct7AEhVIGzz2Xi4RkICEgAJoLa93NjGHvdgOx9uzIRH0VNN8mn_mJ-QA2BhYKU5gnMtCcJAbZASslllVFGyTjBjjkNWykttkJ8YnxgBqIUfk_G7uk8dPYxO21OgQLAaagu5762ZUu5YGNP61sU4n6x3ViU6QGnQJQ6TW0am-2SNbnX6JuL-eu-RhcnF_dpld306vzk6vM5MXMmW6aKBAqKEpKyybshVYlU1etyJnQkrUgmluhttbbbhutWg7KUWuUXTGmI6JXZKt9sYP7BeN6oN91eFLeW3VuX08VT7M1HOaK5CsrKrBH668j8mquPzRzI13Dk1SnBdyif5UH_zbAmNST34R3PCI4sChgrqs80EdrZQJPsaA3W86MLWsXoFaVz_Y4_WdQ-RPbf_D7z78QdW3nfgGVqqRLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121718684</pqid></control><display><type>article</type><title>Photoexcited carrier trapping and recombination at Fe centers in GaN</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Uždavinys, T. K. ; Marcinkevičius, S. ; Leach, J. H. ; Evans, K. R. ; Look, D. C.</creator><creatorcontrib>Uždavinys, T. K. ; Marcinkevičius, S. ; Leach, J. H. ; Evans, K. R. ; Look, D. C.</creatorcontrib><description>Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole.</description><identifier>ISSN: 0021-8979</identifier><identifier>ISSN: 1089-7550</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4953219</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Beta decay ; Carrier recombination ; CARRIERS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DOPED MATERIALS ; ELECTRON CAPTURE ; ELECTRONS ; EXCITATION ; EXCITED STATES ; Ferric ions ; Ferrous ions ; GALLIUM NITRIDES ; GROUND STATES ; HOLES ; IRON IONS ; LASERS ; PHOTOLUMINESCENCE ; Potential barriers ; PULSES ; Radiative recombination ; RECOMBINATION ; RELAXATION ; Repetition ; SPECTROSCOPY ; TEMPERATURE DEPENDENCE ; TIME RESOLUTION ; TRAPPING</subject><ispartof>Journal of applied physics, 2016-06, Vol.119 (21)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</citedby><cites>FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</cites><orcidid>0000-0002-7351-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4953219$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22596773$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190677$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Uždavinys, T. K.</creatorcontrib><creatorcontrib>Marcinkevičius, S.</creatorcontrib><creatorcontrib>Leach, J. H.</creatorcontrib><creatorcontrib>Evans, K. R.</creatorcontrib><creatorcontrib>Look, D. C.</creatorcontrib><title>Photoexcited carrier trapping and recombination at Fe centers in GaN</title><title>Journal of applied physics</title><description>Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole.</description><subject>Applied physics</subject><subject>Beta decay</subject><subject>Carrier recombination</subject><subject>CARRIERS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DOPED MATERIALS</subject><subject>ELECTRON CAPTURE</subject><subject>ELECTRONS</subject><subject>EXCITATION</subject><subject>EXCITED STATES</subject><subject>Ferric ions</subject><subject>Ferrous ions</subject><subject>GALLIUM NITRIDES</subject><subject>GROUND STATES</subject><subject>HOLES</subject><subject>IRON IONS</subject><subject>LASERS</subject><subject>PHOTOLUMINESCENCE</subject><subject>Potential barriers</subject><subject>PULSES</subject><subject>Radiative recombination</subject><subject>RECOMBINATION</subject><subject>RELAXATION</subject><subject>Repetition</subject><subject>SPECTROSCOPY</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TIME RESOLUTION</subject><subject>TRAPPING</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0LlOAzEQBmALgUQ4Ct7AEhVIGzz2Xi4RkICEgAJoLa93NjGHvdgOx9uzIRH0VNN8mn_mJ-QA2BhYKU5gnMtCcJAbZASslllVFGyTjBjjkNWykttkJ8YnxgBqIUfk_G7uk8dPYxO21OgQLAaagu5762ZUu5YGNP61sU4n6x3ViU6QGnQJQ6TW0am-2SNbnX6JuL-eu-RhcnF_dpld306vzk6vM5MXMmW6aKBAqKEpKyybshVYlU1etyJnQkrUgmluhttbbbhutWg7KUWuUXTGmI6JXZKt9sYP7BeN6oN91eFLeW3VuX08VT7M1HOaK5CsrKrBH668j8mquPzRzI13Dk1SnBdyif5UH_zbAmNST34R3PCI4sChgrqs80EdrZQJPsaA3W86MLWsXoFaVz_Y4_WdQ-RPbf_D7z78QdW3nfgGVqqRLA</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Uždavinys, T. K.</creator><creator>Marcinkevičius, S.</creator><creator>Leach, J. H.</creator><creator>Evans, K. R.</creator><creator>Look, D. C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-7351-8615</orcidid></search><sort><creationdate>20160607</creationdate><title>Photoexcited carrier trapping and recombination at Fe centers in GaN</title><author>Uždavinys, T. K. ; Marcinkevičius, S. ; Leach, J. H. ; Evans, K. R. ; Look, D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Beta decay</topic><topic>Carrier recombination</topic><topic>CARRIERS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DOPED MATERIALS</topic><topic>ELECTRON CAPTURE</topic><topic>ELECTRONS</topic><topic>EXCITATION</topic><topic>EXCITED STATES</topic><topic>Ferric ions</topic><topic>Ferrous ions</topic><topic>GALLIUM NITRIDES</topic><topic>GROUND STATES</topic><topic>HOLES</topic><topic>IRON IONS</topic><topic>LASERS</topic><topic>PHOTOLUMINESCENCE</topic><topic>Potential barriers</topic><topic>PULSES</topic><topic>Radiative recombination</topic><topic>RECOMBINATION</topic><topic>RELAXATION</topic><topic>Repetition</topic><topic>SPECTROSCOPY</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TIME RESOLUTION</topic><topic>TRAPPING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uždavinys, T. K.</creatorcontrib><creatorcontrib>Marcinkevičius, S.</creatorcontrib><creatorcontrib>Leach, J. H.</creatorcontrib><creatorcontrib>Evans, K. R.</creatorcontrib><creatorcontrib>Look, D. C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uždavinys, T. K.</au><au>Marcinkevičius, S.</au><au>Leach, J. H.</au><au>Evans, K. R.</au><au>Look, D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoexcited carrier trapping and recombination at Fe centers in GaN</atitle><jtitle>Journal of applied physics</jtitle><date>2016-06-07</date><risdate>2016</risdate><volume>119</volume><issue>21</issue><issn>0021-8979</issn><issn>1089-7550</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4953219</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7351-8615</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-06, Vol.119 (21) |
issn | 0021-8979 1089-7550 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2121718684 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Beta decay Carrier recombination CARRIERS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DOPED MATERIALS ELECTRON CAPTURE ELECTRONS EXCITATION EXCITED STATES Ferric ions Ferrous ions GALLIUM NITRIDES GROUND STATES HOLES IRON IONS LASERS PHOTOLUMINESCENCE Potential barriers PULSES Radiative recombination RECOMBINATION RELAXATION Repetition SPECTROSCOPY TEMPERATURE DEPENDENCE TIME RESOLUTION TRAPPING |
title | Photoexcited carrier trapping and recombination at Fe centers in GaN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoexcited%20carrier%20trapping%20and%20recombination%20at%20Fe%20centers%20in%20GaN&rft.jtitle=Journal%20of%20applied%20physics&rft.au=U%C5%BEdavinys,%20T.%20K.&rft.date=2016-06-07&rft.volume=119&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4953219&rft_dat=%3Cproquest_swepu%3E2121718684%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121718684&rft_id=info:pmid/&rfr_iscdi=true |