Photoexcited carrier trapping and recombination at Fe centers in GaN

Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-06, Vol.119 (21)
Hauptverfasser: Uždavinys, T. K., Marcinkevičius, S., Leach, J. H., Evans, K. R., Look, D. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 119
creator Uždavinys, T. K.
Marcinkevičius, S.
Leach, J. H.
Evans, K. R.
Look, D. C.
description Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole.
doi_str_mv 10.1063/1.4953219
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2121718684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121718684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</originalsourceid><addsrcrecordid>eNqd0LlOAzEQBmALgUQ4Ct7AEhVIGzz2Xi4RkICEgAJoLa93NjGHvdgOx9uzIRH0VNN8mn_mJ-QA2BhYKU5gnMtCcJAbZASslllVFGyTjBjjkNWykttkJ8YnxgBqIUfk_G7uk8dPYxO21OgQLAaagu5762ZUu5YGNP61sU4n6x3ViU6QGnQJQ6TW0am-2SNbnX6JuL-eu-RhcnF_dpld306vzk6vM5MXMmW6aKBAqKEpKyybshVYlU1etyJnQkrUgmluhttbbbhutWg7KUWuUXTGmI6JXZKt9sYP7BeN6oN91eFLeW3VuX08VT7M1HOaK5CsrKrBH668j8mquPzRzI13Dk1SnBdyif5UH_zbAmNST34R3PCI4sChgrqs80EdrZQJPsaA3W86MLWsXoFaVz_Y4_WdQ-RPbf_D7z78QdW3nfgGVqqRLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121718684</pqid></control><display><type>article</type><title>Photoexcited carrier trapping and recombination at Fe centers in GaN</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Uždavinys, T. K. ; Marcinkevičius, S. ; Leach, J. H. ; Evans, K. R. ; Look, D. C.</creator><creatorcontrib>Uždavinys, T. K. ; Marcinkevičius, S. ; Leach, J. H. ; Evans, K. R. ; Look, D. C.</creatorcontrib><description>Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole.</description><identifier>ISSN: 0021-8979</identifier><identifier>ISSN: 1089-7550</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4953219</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Beta decay ; Carrier recombination ; CARRIERS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DOPED MATERIALS ; ELECTRON CAPTURE ; ELECTRONS ; EXCITATION ; EXCITED STATES ; Ferric ions ; Ferrous ions ; GALLIUM NITRIDES ; GROUND STATES ; HOLES ; IRON IONS ; LASERS ; PHOTOLUMINESCENCE ; Potential barriers ; PULSES ; Radiative recombination ; RECOMBINATION ; RELAXATION ; Repetition ; SPECTROSCOPY ; TEMPERATURE DEPENDENCE ; TIME RESOLUTION ; TRAPPING</subject><ispartof>Journal of applied physics, 2016-06, Vol.119 (21)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</citedby><cites>FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</cites><orcidid>0000-0002-7351-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4953219$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22596773$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190677$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Uždavinys, T. K.</creatorcontrib><creatorcontrib>Marcinkevičius, S.</creatorcontrib><creatorcontrib>Leach, J. H.</creatorcontrib><creatorcontrib>Evans, K. R.</creatorcontrib><creatorcontrib>Look, D. C.</creatorcontrib><title>Photoexcited carrier trapping and recombination at Fe centers in GaN</title><title>Journal of applied physics</title><description>Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole.</description><subject>Applied physics</subject><subject>Beta decay</subject><subject>Carrier recombination</subject><subject>CARRIERS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DOPED MATERIALS</subject><subject>ELECTRON CAPTURE</subject><subject>ELECTRONS</subject><subject>EXCITATION</subject><subject>EXCITED STATES</subject><subject>Ferric ions</subject><subject>Ferrous ions</subject><subject>GALLIUM NITRIDES</subject><subject>GROUND STATES</subject><subject>HOLES</subject><subject>IRON IONS</subject><subject>LASERS</subject><subject>PHOTOLUMINESCENCE</subject><subject>Potential barriers</subject><subject>PULSES</subject><subject>Radiative recombination</subject><subject>RECOMBINATION</subject><subject>RELAXATION</subject><subject>Repetition</subject><subject>SPECTROSCOPY</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TIME RESOLUTION</subject><subject>TRAPPING</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0LlOAzEQBmALgUQ4Ct7AEhVIGzz2Xi4RkICEgAJoLa93NjGHvdgOx9uzIRH0VNN8mn_mJ-QA2BhYKU5gnMtCcJAbZASslllVFGyTjBjjkNWykttkJ8YnxgBqIUfk_G7uk8dPYxO21OgQLAaagu5762ZUu5YGNP61sU4n6x3ViU6QGnQJQ6TW0am-2SNbnX6JuL-eu-RhcnF_dpld306vzk6vM5MXMmW6aKBAqKEpKyybshVYlU1etyJnQkrUgmluhttbbbhutWg7KUWuUXTGmI6JXZKt9sYP7BeN6oN91eFLeW3VuX08VT7M1HOaK5CsrKrBH668j8mquPzRzI13Dk1SnBdyif5UH_zbAmNST34R3PCI4sChgrqs80EdrZQJPsaA3W86MLWsXoFaVz_Y4_WdQ-RPbf_D7z78QdW3nfgGVqqRLA</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Uždavinys, T. K.</creator><creator>Marcinkevičius, S.</creator><creator>Leach, J. H.</creator><creator>Evans, K. R.</creator><creator>Look, D. C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-7351-8615</orcidid></search><sort><creationdate>20160607</creationdate><title>Photoexcited carrier trapping and recombination at Fe centers in GaN</title><author>Uždavinys, T. K. ; Marcinkevičius, S. ; Leach, J. H. ; Evans, K. R. ; Look, D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-a5b15e181b67e6b6d3e76b48d340399ea30a2c219dac2ada3df9934ae3fcccf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Beta decay</topic><topic>Carrier recombination</topic><topic>CARRIERS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DOPED MATERIALS</topic><topic>ELECTRON CAPTURE</topic><topic>ELECTRONS</topic><topic>EXCITATION</topic><topic>EXCITED STATES</topic><topic>Ferric ions</topic><topic>Ferrous ions</topic><topic>GALLIUM NITRIDES</topic><topic>GROUND STATES</topic><topic>HOLES</topic><topic>IRON IONS</topic><topic>LASERS</topic><topic>PHOTOLUMINESCENCE</topic><topic>Potential barriers</topic><topic>PULSES</topic><topic>Radiative recombination</topic><topic>RECOMBINATION</topic><topic>RELAXATION</topic><topic>Repetition</topic><topic>SPECTROSCOPY</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TIME RESOLUTION</topic><topic>TRAPPING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uždavinys, T. K.</creatorcontrib><creatorcontrib>Marcinkevičius, S.</creatorcontrib><creatorcontrib>Leach, J. H.</creatorcontrib><creatorcontrib>Evans, K. R.</creatorcontrib><creatorcontrib>Look, D. C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uždavinys, T. K.</au><au>Marcinkevičius, S.</au><au>Leach, J. H.</au><au>Evans, K. R.</au><au>Look, D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoexcited carrier trapping and recombination at Fe centers in GaN</atitle><jtitle>Journal of applied physics</jtitle><date>2016-06-07</date><risdate>2016</risdate><volume>119</volume><issue>21</issue><issn>0021-8979</issn><issn>1089-7550</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe3+ and Fe2+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10−8 cm3/s and 1.8 × 10−8 cm3/s should be attributed to excited Fe3+ and Fe2+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe2+ state and a bound hole.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4953219</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7351-8615</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-06, Vol.119 (21)
issn 0021-8979
1089-7550
1089-7550
language eng
recordid cdi_proquest_journals_2121718684
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Beta decay
Carrier recombination
CARRIERS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DOPED MATERIALS
ELECTRON CAPTURE
ELECTRONS
EXCITATION
EXCITED STATES
Ferric ions
Ferrous ions
GALLIUM NITRIDES
GROUND STATES
HOLES
IRON IONS
LASERS
PHOTOLUMINESCENCE
Potential barriers
PULSES
Radiative recombination
RECOMBINATION
RELAXATION
Repetition
SPECTROSCOPY
TEMPERATURE DEPENDENCE
TIME RESOLUTION
TRAPPING
title Photoexcited carrier trapping and recombination at Fe centers in GaN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoexcited%20carrier%20trapping%20and%20recombination%20at%20Fe%20centers%20in%20GaN&rft.jtitle=Journal%20of%20applied%20physics&rft.au=U%C5%BEdavinys,%20T.%20K.&rft.date=2016-06-07&rft.volume=119&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4953219&rft_dat=%3Cproquest_swepu%3E2121718684%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121718684&rft_id=info:pmid/&rfr_iscdi=true