On the pre-compactness of a set in the generalized Morrey spaces

In this paper, we present sufficient conditions for the pre-compactness of sets in the generalized Morrey spaces M p w . From this theorem for the case of w(r) = r −λ follows the known result for the Morrey space M p λ , and in the case of λ = 0 this is the well-known Frechet-Kolmogorov theorem....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bokayev, Nurzhan, Burenkov, Victor, Matin, Dauren
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1759
creator Bokayev, Nurzhan
Burenkov, Victor
Matin, Dauren
description In this paper, we present sufficient conditions for the pre-compactness of sets in the generalized Morrey spaces M p w . From this theorem for the case of w(r) = r −λ follows the known result for the Morrey space M p λ , and in the case of λ = 0 this is the well-known Frechet-Kolmogorov theorem.
doi_str_mv 10.1063/1.4959722
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121695478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121695478</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-e7ee7eeaea6256c80b5837d828ec27509347e67ef600f7d26fb1c1ebbf6fa1a53</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszSSbZPemFL-g0ouCt5DdneiWdrMmqVB_vVu24E0YmMM8vAMvIZfAZsCUuIFZXspSc35EJiAlZFqBOiYTxso847l4PyVnMa4Y46XWxYTcLjuaPpH2AbPab3pbpw5jpN5RSyMm2o73D-ww2HX7gw198SHgjsYBYzwnJ86uI14c9pS8Pdy_zp-yxfLxeX63yHouRcpQ434sWsWlqgtWyULopuAF1lxLVopco9LoFGNON1y5CmrAqnLKWbBSTMnVmNsH_7XFmMzKb0M3vDQcOKhS5roY1PWoYt0mm1rfmT60Gxt2BpjZN2TAHBr6D3_78AdN3zjxCzmbZm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121695478</pqid></control><display><type>conference_proceeding</type><title>On the pre-compactness of a set in the generalized Morrey spaces</title><source>AIP Journals Complete</source><creator>Bokayev, Nurzhan ; Burenkov, Victor ; Matin, Dauren</creator><contributor>Ashyralyev, Allaberen ; Lukashov, Alexey</contributor><creatorcontrib>Bokayev, Nurzhan ; Burenkov, Victor ; Matin, Dauren ; Ashyralyev, Allaberen ; Lukashov, Alexey</creatorcontrib><description>In this paper, we present sufficient conditions for the pre-compactness of sets in the generalized Morrey spaces M p w . From this theorem for the case of w(r) = r −λ follows the known result for the Morrey space M p λ , and in the case of λ = 0 this is the well-known Frechet-Kolmogorov theorem.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4959722</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Theorems</subject><ispartof>AIP conference proceedings, 2016, Vol.1759 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4959722$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ashyralyev, Allaberen</contributor><contributor>Lukashov, Alexey</contributor><creatorcontrib>Bokayev, Nurzhan</creatorcontrib><creatorcontrib>Burenkov, Victor</creatorcontrib><creatorcontrib>Matin, Dauren</creatorcontrib><title>On the pre-compactness of a set in the generalized Morrey spaces</title><title>AIP conference proceedings</title><description>In this paper, we present sufficient conditions for the pre-compactness of sets in the generalized Morrey spaces M p w . From this theorem for the case of w(r) = r −λ follows the known result for the Morrey space M p λ , and in the case of λ = 0 this is the well-known Frechet-Kolmogorov theorem.</description><subject>Theorems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszSSbZPemFL-g0ouCt5DdneiWdrMmqVB_vVu24E0YmMM8vAMvIZfAZsCUuIFZXspSc35EJiAlZFqBOiYTxso847l4PyVnMa4Y46XWxYTcLjuaPpH2AbPab3pbpw5jpN5RSyMm2o73D-ww2HX7gw198SHgjsYBYzwnJ86uI14c9pS8Pdy_zp-yxfLxeX63yHouRcpQ434sWsWlqgtWyULopuAF1lxLVopco9LoFGNON1y5CmrAqnLKWbBSTMnVmNsH_7XFmMzKb0M3vDQcOKhS5roY1PWoYt0mm1rfmT60Gxt2BpjZN2TAHBr6D3_78AdN3zjxCzmbZm4</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Bokayev, Nurzhan</creator><creator>Burenkov, Victor</creator><creator>Matin, Dauren</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160810</creationdate><title>On the pre-compactness of a set in the generalized Morrey spaces</title><author>Bokayev, Nurzhan ; Burenkov, Victor ; Matin, Dauren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-e7ee7eeaea6256c80b5837d828ec27509347e67ef600f7d26fb1c1ebbf6fa1a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokayev, Nurzhan</creatorcontrib><creatorcontrib>Burenkov, Victor</creatorcontrib><creatorcontrib>Matin, Dauren</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokayev, Nurzhan</au><au>Burenkov, Victor</au><au>Matin, Dauren</au><au>Ashyralyev, Allaberen</au><au>Lukashov, Alexey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the pre-compactness of a set in the generalized Morrey spaces</atitle><btitle>AIP conference proceedings</btitle><date>2016-08-10</date><risdate>2016</risdate><volume>1759</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we present sufficient conditions for the pre-compactness of sets in the generalized Morrey spaces M p w . From this theorem for the case of w(r) = r −λ follows the known result for the Morrey space M p λ , and in the case of λ = 0 this is the well-known Frechet-Kolmogorov theorem.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4959722</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1759 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2121695478
source AIP Journals Complete
subjects Theorems
title On the pre-compactness of a set in the generalized Morrey spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20pre-compactness%20of%20a%20set%20in%20the%20generalized%20Morrey%20spaces&rft.btitle=AIP%20conference%20proceedings&rft.au=Bokayev,%20Nurzhan&rft.date=2016-08-10&rft.volume=1759&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4959722&rft_dat=%3Cproquest_scita%3E2121695478%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121695478&rft_id=info:pmid/&rfr_iscdi=true