Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique
Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-posi...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2016-07, Vol.87 (7), p.074901-074901 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 074901 |
---|---|
container_issue | 7 |
container_start_page | 074901 |
container_title | Review of scientific instruments |
container_volume | 87 |
creator | Sizov, A. Cederkrantz, D. Salmi, L. Rosén, A. Jacobson, L. Gustafsson, S. E. Gustavsson, M. |
description | Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects. |
doi_str_mv | 10.1063/1.4954972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121678350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808376224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</originalsourceid><addsrcrecordid>eNp90U-L1DAYBvAgijuOHvwCUvDiCl3zt02Py-KqsODB9RzS5M00S9vUJB3Zb2_GGVcQ1l4C5ceTvO-D0GuCLwhu2AdywTvBu5Y-QRuCZVe3DWVP0QZjxuum5fIMvUjpDpdPEPIcndGWt0JIvkHmdoA46bEyYbaryX7v8321h5jWVFlY8lAtMTg_-nlXBVf5eQhT2MEMoYBJZ4hej6la0wHkAaoh5Mr6ZKoMZpj9jxVeomeuGHh1Orfo-_XH26vP9c3XT1-uLm9qIxjNde80E1oAlppqwk1nRdcz61pMuZWES05tYxtCnNamwKZzGDR3phHSEivYFn075qafsKy9WqKfdLxXQXsVIYGOZlBm0ONUxlMJFJG0lS02ylFgivdtp2RHiGK0Z1RCY8G1JbV-NHW3Lqr82q2HNMoZkbL4d0df9laGT1lNZRswjvr3zsqlWLJSUOFb9PYfehfWOJcdKUooaVrJBC7q_KhMDClFcA9PIFgd-ldEnfov9s0pce0nsA_yT-EFvD9NY3zW2Yf5v2mP4n2If6FarGO_AIEryAk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121678350</pqid></control><display><type>article</type><title>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Sizov, A. ; Cederkrantz, D. ; Salmi, L. ; Rosén, A. ; Jacobson, L. ; Gustafsson, S. E. ; Gustavsson, M.</creator><creatorcontrib>Sizov, A. ; Cederkrantz, D. ; Salmi, L. ; Rosén, A. ; Jacobson, L. ; Gustafsson, S. E. ; Gustavsson, M.</creatorcontrib><description>Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.</description><identifier>ISSN: 0034-6748</identifier><identifier>ISSN: 1089-7623</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4954972</identifier><identifier>PMID: 27475584</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Contact impedance ; Defects ; Depth profiling ; Depth profiling techniques ; Destructive testing ; diffusivity ; Diseases and conditions ; Finite-element analysis ; Fysik ; heat ; Heat conductivity ; Heat transfer ; Instruments & Instrumentation ; Integral calculus ; Natural materials ; Nondestructive testing ; Nondestructive testing techniques ; Physical Sciences ; Physics ; Scientific apparatus & instruments ; Skin ; solids ; strip method ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Review of scientific instruments, 2016-07, Vol.87 (7), p.074901-074901</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</citedby><cites>FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</cites><orcidid>0000-0003-2826-8423 ; 0000-0003-0675-9969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4954972$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27475584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/243188$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/537420$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sizov, A.</creatorcontrib><creatorcontrib>Cederkrantz, D.</creatorcontrib><creatorcontrib>Salmi, L.</creatorcontrib><creatorcontrib>Rosén, A.</creatorcontrib><creatorcontrib>Jacobson, L.</creatorcontrib><creatorcontrib>Gustafsson, S. E.</creatorcontrib><creatorcontrib>Gustavsson, M.</creatorcontrib><title>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.</description><subject>Contact impedance</subject><subject>Defects</subject><subject>Depth profiling</subject><subject>Depth profiling techniques</subject><subject>Destructive testing</subject><subject>diffusivity</subject><subject>Diseases and conditions</subject><subject>Finite-element analysis</subject><subject>Fysik</subject><subject>heat</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Instruments & Instrumentation</subject><subject>Integral calculus</subject><subject>Natural materials</subject><subject>Nondestructive testing</subject><subject>Nondestructive testing techniques</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Scientific apparatus & instruments</subject><subject>Skin</subject><subject>solids</subject><subject>strip method</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0034-6748</issn><issn>1089-7623</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp90U-L1DAYBvAgijuOHvwCUvDiCl3zt02Py-KqsODB9RzS5M00S9vUJB3Zb2_GGVcQ1l4C5ceTvO-D0GuCLwhu2AdywTvBu5Y-QRuCZVe3DWVP0QZjxuum5fIMvUjpDpdPEPIcndGWt0JIvkHmdoA46bEyYbaryX7v8321h5jWVFlY8lAtMTg_-nlXBVf5eQhT2MEMoYBJZ4hej6la0wHkAaoh5Mr6ZKoMZpj9jxVeomeuGHh1Orfo-_XH26vP9c3XT1-uLm9qIxjNde80E1oAlppqwk1nRdcz61pMuZWES05tYxtCnNamwKZzGDR3phHSEivYFn075qafsKy9WqKfdLxXQXsVIYGOZlBm0ONUxlMJFJG0lS02ylFgivdtp2RHiGK0Z1RCY8G1JbV-NHW3Lqr82q2HNMoZkbL4d0df9laGT1lNZRswjvr3zsqlWLJSUOFb9PYfehfWOJcdKUooaVrJBC7q_KhMDClFcA9PIFgd-ldEnfov9s0pce0nsA_yT-EFvD9NY3zW2Yf5v2mP4n2If6FarGO_AIEryAk</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Sizov, A.</creator><creator>Cederkrantz, D.</creator><creator>Salmi, L.</creator><creator>Rosén, A.</creator><creator>Jacobson, L.</creator><creator>Gustafsson, S. E.</creator><creator>Gustavsson, M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>ABBSD</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2826-8423</orcidid><orcidid>https://orcid.org/0000-0003-0675-9969</orcidid></search><sort><creationdate>20160701</creationdate><title>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</title><author>Sizov, A. ; Cederkrantz, D. ; Salmi, L. ; Rosén, A. ; Jacobson, L. ; Gustafsson, S. E. ; Gustavsson, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Contact impedance</topic><topic>Defects</topic><topic>Depth profiling</topic><topic>Depth profiling techniques</topic><topic>Destructive testing</topic><topic>diffusivity</topic><topic>Diseases and conditions</topic><topic>Finite-element analysis</topic><topic>Fysik</topic><topic>heat</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Instruments & Instrumentation</topic><topic>Integral calculus</topic><topic>Natural materials</topic><topic>Nondestructive testing</topic><topic>Nondestructive testing techniques</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Scientific apparatus & instruments</topic><topic>Skin</topic><topic>solids</topic><topic>strip method</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sizov, A.</creatorcontrib><creatorcontrib>Cederkrantz, D.</creatorcontrib><creatorcontrib>Salmi, L.</creatorcontrib><creatorcontrib>Rosén, A.</creatorcontrib><creatorcontrib>Jacobson, L.</creatorcontrib><creatorcontrib>Gustafsson, S. E.</creatorcontrib><creatorcontrib>Gustavsson, M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sizov, A.</au><au>Cederkrantz, D.</au><au>Salmi, L.</au><au>Rosén, A.</au><au>Jacobson, L.</au><au>Gustafsson, S. E.</au><au>Gustavsson, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>87</volume><issue>7</issue><spage>074901</spage><epage>074901</epage><pages>074901-074901</pages><issn>0034-6748</issn><issn>1089-7623</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27475584</pmid><doi>10.1063/1.4954972</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2826-8423</orcidid><orcidid>https://orcid.org/0000-0003-0675-9969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2016-07, Vol.87 (7), p.074901-074901 |
issn | 0034-6748 1089-7623 1089-7623 |
language | eng |
recordid | cdi_proquest_journals_2121678350 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | Contact impedance Defects Depth profiling Depth profiling techniques Destructive testing diffusivity Diseases and conditions Finite-element analysis Fysik heat Heat conductivity Heat transfer Instruments & Instrumentation Integral calculus Natural materials Nondestructive testing Nondestructive testing techniques Physical Sciences Physics Scientific apparatus & instruments Skin solids strip method Thermal conductivity Thermodynamic properties |
title | Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20versus%20depth%20profiling%20of%20inhomogeneous%20materials%20using%20the%20hot%20disc%20technique&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Sizov,%20A.&rft.date=2016-07-01&rft.volume=87&rft.issue=7&rft.spage=074901&rft.epage=074901&rft.pages=074901-074901&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4954972&rft_dat=%3Cproquest_scita%3E1808376224%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121678350&rft_id=info:pmid/27475584&rfr_iscdi=true |