Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique

Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-posi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-07, Vol.87 (7), p.074901-074901
Hauptverfasser: Sizov, A., Cederkrantz, D., Salmi, L., Rosén, A., Jacobson, L., Gustafsson, S. E., Gustavsson, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 074901
container_issue 7
container_start_page 074901
container_title Review of scientific instruments
container_volume 87
creator Sizov, A.
Cederkrantz, D.
Salmi, L.
Rosén, A.
Jacobson, L.
Gustafsson, S. E.
Gustavsson, M.
description Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.
doi_str_mv 10.1063/1.4954972
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121678350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808376224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</originalsourceid><addsrcrecordid>eNp90U-L1DAYBvAgijuOHvwCUvDiCl3zt02Py-KqsODB9RzS5M00S9vUJB3Zb2_GGVcQ1l4C5ceTvO-D0GuCLwhu2AdywTvBu5Y-QRuCZVe3DWVP0QZjxuum5fIMvUjpDpdPEPIcndGWt0JIvkHmdoA46bEyYbaryX7v8321h5jWVFlY8lAtMTg_-nlXBVf5eQhT2MEMoYBJZ4hej6la0wHkAaoh5Mr6ZKoMZpj9jxVeomeuGHh1Orfo-_XH26vP9c3XT1-uLm9qIxjNde80E1oAlppqwk1nRdcz61pMuZWES05tYxtCnNamwKZzGDR3phHSEivYFn075qafsKy9WqKfdLxXQXsVIYGOZlBm0ONUxlMJFJG0lS02ylFgivdtp2RHiGK0Z1RCY8G1JbV-NHW3Lqr82q2HNMoZkbL4d0df9laGT1lNZRswjvr3zsqlWLJSUOFb9PYfehfWOJcdKUooaVrJBC7q_KhMDClFcA9PIFgd-ldEnfov9s0pce0nsA_yT-EFvD9NY3zW2Yf5v2mP4n2If6FarGO_AIEryAk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121678350</pqid></control><display><type>article</type><title>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Sizov, A. ; Cederkrantz, D. ; Salmi, L. ; Rosén, A. ; Jacobson, L. ; Gustafsson, S. E. ; Gustavsson, M.</creator><creatorcontrib>Sizov, A. ; Cederkrantz, D. ; Salmi, L. ; Rosén, A. ; Jacobson, L. ; Gustafsson, S. E. ; Gustavsson, M.</creatorcontrib><description>Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.</description><identifier>ISSN: 0034-6748</identifier><identifier>ISSN: 1089-7623</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4954972</identifier><identifier>PMID: 27475584</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Contact impedance ; Defects ; Depth profiling ; Depth profiling techniques ; Destructive testing ; diffusivity ; Diseases and conditions ; Finite-element analysis ; Fysik ; heat ; Heat conductivity ; Heat transfer ; Instruments &amp; Instrumentation ; Integral calculus ; Natural materials ; Nondestructive testing ; Nondestructive testing techniques ; Physical Sciences ; Physics ; Scientific apparatus &amp; instruments ; Skin ; solids ; strip method ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Review of scientific instruments, 2016-07, Vol.87 (7), p.074901-074901</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</citedby><cites>FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</cites><orcidid>0000-0003-2826-8423 ; 0000-0003-0675-9969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4954972$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27475584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/243188$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/537420$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sizov, A.</creatorcontrib><creatorcontrib>Cederkrantz, D.</creatorcontrib><creatorcontrib>Salmi, L.</creatorcontrib><creatorcontrib>Rosén, A.</creatorcontrib><creatorcontrib>Jacobson, L.</creatorcontrib><creatorcontrib>Gustafsson, S. E.</creatorcontrib><creatorcontrib>Gustavsson, M.</creatorcontrib><title>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.</description><subject>Contact impedance</subject><subject>Defects</subject><subject>Depth profiling</subject><subject>Depth profiling techniques</subject><subject>Destructive testing</subject><subject>diffusivity</subject><subject>Diseases and conditions</subject><subject>Finite-element analysis</subject><subject>Fysik</subject><subject>heat</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Instruments &amp; Instrumentation</subject><subject>Integral calculus</subject><subject>Natural materials</subject><subject>Nondestructive testing</subject><subject>Nondestructive testing techniques</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Skin</subject><subject>solids</subject><subject>strip method</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0034-6748</issn><issn>1089-7623</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp90U-L1DAYBvAgijuOHvwCUvDiCl3zt02Py-KqsODB9RzS5M00S9vUJB3Zb2_GGVcQ1l4C5ceTvO-D0GuCLwhu2AdywTvBu5Y-QRuCZVe3DWVP0QZjxuum5fIMvUjpDpdPEPIcndGWt0JIvkHmdoA46bEyYbaryX7v8321h5jWVFlY8lAtMTg_-nlXBVf5eQhT2MEMoYBJZ4hej6la0wHkAaoh5Mr6ZKoMZpj9jxVeomeuGHh1Orfo-_XH26vP9c3XT1-uLm9qIxjNde80E1oAlppqwk1nRdcz61pMuZWES05tYxtCnNamwKZzGDR3phHSEivYFn075qafsKy9WqKfdLxXQXsVIYGOZlBm0ONUxlMJFJG0lS02ylFgivdtp2RHiGK0Z1RCY8G1JbV-NHW3Lqr82q2HNMoZkbL4d0df9laGT1lNZRswjvr3zsqlWLJSUOFb9PYfehfWOJcdKUooaVrJBC7q_KhMDClFcA9PIFgd-ldEnfov9s0pce0nsA_yT-EFvD9NY3zW2Yf5v2mP4n2If6FarGO_AIEryAk</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Sizov, A.</creator><creator>Cederkrantz, D.</creator><creator>Salmi, L.</creator><creator>Rosén, A.</creator><creator>Jacobson, L.</creator><creator>Gustafsson, S. E.</creator><creator>Gustavsson, M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>ABBSD</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2826-8423</orcidid><orcidid>https://orcid.org/0000-0003-0675-9969</orcidid></search><sort><creationdate>20160701</creationdate><title>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</title><author>Sizov, A. ; Cederkrantz, D. ; Salmi, L. ; Rosén, A. ; Jacobson, L. ; Gustafsson, S. E. ; Gustavsson, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-bfa35a5e08a2a14c9d59b3df7024d814842d6d611faac5a569f0ea4fc658d1d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Contact impedance</topic><topic>Defects</topic><topic>Depth profiling</topic><topic>Depth profiling techniques</topic><topic>Destructive testing</topic><topic>diffusivity</topic><topic>Diseases and conditions</topic><topic>Finite-element analysis</topic><topic>Fysik</topic><topic>heat</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Instruments &amp; Instrumentation</topic><topic>Integral calculus</topic><topic>Natural materials</topic><topic>Nondestructive testing</topic><topic>Nondestructive testing techniques</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Skin</topic><topic>solids</topic><topic>strip method</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sizov, A.</creatorcontrib><creatorcontrib>Cederkrantz, D.</creatorcontrib><creatorcontrib>Salmi, L.</creatorcontrib><creatorcontrib>Rosén, A.</creatorcontrib><creatorcontrib>Jacobson, L.</creatorcontrib><creatorcontrib>Gustafsson, S. E.</creatorcontrib><creatorcontrib>Gustavsson, M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sizov, A.</au><au>Cederkrantz, D.</au><au>Salmi, L.</au><au>Rosén, A.</au><au>Jacobson, L.</au><au>Gustafsson, S. E.</au><au>Gustavsson, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>87</volume><issue>7</issue><spage>074901</spage><epage>074901</epage><pages>074901-074901</pages><issn>0034-6748</issn><issn>1089-7623</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate—yet reproducible—estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27475584</pmid><doi>10.1063/1.4954972</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2826-8423</orcidid><orcidid>https://orcid.org/0000-0003-0675-9969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2016-07, Vol.87 (7), p.074901-074901
issn 0034-6748
1089-7623
1089-7623
language eng
recordid cdi_proquest_journals_2121678350
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Contact impedance
Defects
Depth profiling
Depth profiling techniques
Destructive testing
diffusivity
Diseases and conditions
Finite-element analysis
Fysik
heat
Heat conductivity
Heat transfer
Instruments & Instrumentation
Integral calculus
Natural materials
Nondestructive testing
Nondestructive testing techniques
Physical Sciences
Physics
Scientific apparatus & instruments
Skin
solids
strip method
Thermal conductivity
Thermodynamic properties
title Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20versus%20depth%20profiling%20of%20inhomogeneous%20materials%20using%20the%20hot%20disc%20technique&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Sizov,%20A.&rft.date=2016-07-01&rft.volume=87&rft.issue=7&rft.spage=074901&rft.epage=074901&rft.pages=074901-074901&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4954972&rft_dat=%3Cproquest_scita%3E1808376224%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121678350&rft_id=info:pmid/27475584&rfr_iscdi=true