Risk assessment of slope failure considering the variability in soil properties
To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2018-11, Vol.103, p.61-72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | Computers and geotechnics |
container_volume | 103 |
creator | Cheng, Hongzhan Chen, Jian Chen, Renpeng Chen, Guoliang Zhong, Yu |
description | To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case. |
doi_str_mv | 10.1016/j.compgeo.2018.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121672460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X1830171X</els_id><sourcerecordid>2121672460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QQh43ZqPNWmvRIZfMBiIgnchTU9natfMnG6wf2_Gdu_VuXmf9-U8hNxylnPG1X2Xu7DerCDkgvEyZzpnTJ2RCS-1zLSS8pxMmFAqk4X4uiRXiB1LXFVWE7J89_hDLSIgrmEYaWgp9mEDtLW-30agLgzoG4h-WNHxG-jORm9r3_txT_1AMfiebmIi4ugBr8lFa3uEm9Odks_np4_5a7ZYvrzNHxeZk1KPmWa2nHHOy8bWWtbACtfYSgBvZVlUNTQWNDRVy4UrCsVUbQWbaShbBQBFIeSU3B170_TvFnA0XdjGIU0awQVXWswUS6nimHIxIEZozSb6tY17w5k5uDOdObkzB3eGaZPcJe7hyEF6YechGnQeBgeNj-BG0wT_T8MftZF8Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121672460</pqid></control><display><type>article</type><title>Risk assessment of slope failure considering the variability in soil properties</title><source>Elsevier ScienceDirect Journals</source><creator>Cheng, Hongzhan ; Chen, Jian ; Chen, Renpeng ; Chen, Guoliang ; Zhong, Yu</creator><creatorcontrib>Cheng, Hongzhan ; Chen, Jian ; Chen, Renpeng ; Chen, Guoliang ; Zhong, Yu</creatorcontrib><description>To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2018.07.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Auto-correlation structures ; Autocorrelation ; Correlation ; Correlation analysis ; Failure ; Finite difference method ; Parametric analysis ; Random field ; Reliability ; Risk analysis ; Risk assessment ; Slip mass ; Slope ; Slope failure ; Soil ; Soil properties ; Soils ; Spatial variations ; Variability</subject><ispartof>Computers and geotechnics, 2018-11, Vol.103, p.61-72</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</citedby><cites>FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266352X1830171X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Cheng, Hongzhan</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Chen, Renpeng</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><title>Risk assessment of slope failure considering the variability in soil properties</title><title>Computers and geotechnics</title><description>To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.</description><subject>Anisotropy</subject><subject>Auto-correlation structures</subject><subject>Autocorrelation</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Failure</subject><subject>Finite difference method</subject><subject>Parametric analysis</subject><subject>Random field</subject><subject>Reliability</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Slip mass</subject><subject>Slope</subject><subject>Slope failure</subject><subject>Soil</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Spatial variations</subject><subject>Variability</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QQh43ZqPNWmvRIZfMBiIgnchTU9natfMnG6wf2_Gdu_VuXmf9-U8hNxylnPG1X2Xu7DerCDkgvEyZzpnTJ2RCS-1zLSS8pxMmFAqk4X4uiRXiB1LXFVWE7J89_hDLSIgrmEYaWgp9mEDtLW-30agLgzoG4h-WNHxG-jORm9r3_txT_1AMfiebmIi4ugBr8lFa3uEm9Odks_np4_5a7ZYvrzNHxeZk1KPmWa2nHHOy8bWWtbACtfYSgBvZVlUNTQWNDRVy4UrCsVUbQWbaShbBQBFIeSU3B170_TvFnA0XdjGIU0awQVXWswUS6nimHIxIEZozSb6tY17w5k5uDOdObkzB3eGaZPcJe7hyEF6YechGnQeBgeNj-BG0wT_T8MftZF8Aw</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Cheng, Hongzhan</creator><creator>Chen, Jian</creator><creator>Chen, Renpeng</creator><creator>Chen, Guoliang</creator><creator>Zhong, Yu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201811</creationdate><title>Risk assessment of slope failure considering the variability in soil properties</title><author>Cheng, Hongzhan ; Chen, Jian ; Chen, Renpeng ; Chen, Guoliang ; Zhong, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Auto-correlation structures</topic><topic>Autocorrelation</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Failure</topic><topic>Finite difference method</topic><topic>Parametric analysis</topic><topic>Random field</topic><topic>Reliability</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Slip mass</topic><topic>Slope</topic><topic>Slope failure</topic><topic>Soil</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Spatial variations</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Hongzhan</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Chen, Renpeng</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Hongzhan</au><au>Chen, Jian</au><au>Chen, Renpeng</au><au>Chen, Guoliang</au><au>Zhong, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk assessment of slope failure considering the variability in soil properties</atitle><jtitle>Computers and geotechnics</jtitle><date>2018-11</date><risdate>2018</risdate><volume>103</volume><spage>61</spage><epage>72</epage><pages>61-72</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2018.07.006</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-352X |
ispartof | Computers and geotechnics, 2018-11, Vol.103, p.61-72 |
issn | 0266-352X 1873-7633 |
language | eng |
recordid | cdi_proquest_journals_2121672460 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropy Auto-correlation structures Autocorrelation Correlation Correlation analysis Failure Finite difference method Parametric analysis Random field Reliability Risk analysis Risk assessment Slip mass Slope Slope failure Soil Soil properties Soils Spatial variations Variability |
title | Risk assessment of slope failure considering the variability in soil properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20assessment%20of%20slope%20failure%20considering%20the%20variability%20in%20soil%20properties&rft.jtitle=Computers%20and%20geotechnics&rft.au=Cheng,%20Hongzhan&rft.date=2018-11&rft.volume=103&rft.spage=61&rft.epage=72&rft.pages=61-72&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2018.07.006&rft_dat=%3Cproquest_cross%3E2121672460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121672460&rft_id=info:pmid/&rft_els_id=S0266352X1830171X&rfr_iscdi=true |