Risk assessment of slope failure considering the variability in soil properties

To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and geotechnics 2018-11, Vol.103, p.61-72
Hauptverfasser: Cheng, Hongzhan, Chen, Jian, Chen, Renpeng, Chen, Guoliang, Zhong, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 61
container_title Computers and geotechnics
container_volume 103
creator Cheng, Hongzhan
Chen, Jian
Chen, Renpeng
Chen, Guoliang
Zhong, Yu
description To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.
doi_str_mv 10.1016/j.compgeo.2018.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121672460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X1830171X</els_id><sourcerecordid>2121672460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QQh43ZqPNWmvRIZfMBiIgnchTU9natfMnG6wf2_Gdu_VuXmf9-U8hNxylnPG1X2Xu7DerCDkgvEyZzpnTJ2RCS-1zLSS8pxMmFAqk4X4uiRXiB1LXFVWE7J89_hDLSIgrmEYaWgp9mEDtLW-30agLgzoG4h-WNHxG-jORm9r3_txT_1AMfiebmIi4ugBr8lFa3uEm9Odks_np4_5a7ZYvrzNHxeZk1KPmWa2nHHOy8bWWtbACtfYSgBvZVlUNTQWNDRVy4UrCsVUbQWbaShbBQBFIeSU3B170_TvFnA0XdjGIU0awQVXWswUS6nimHIxIEZozSb6tY17w5k5uDOdObkzB3eGaZPcJe7hyEF6YechGnQeBgeNj-BG0wT_T8MftZF8Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121672460</pqid></control><display><type>article</type><title>Risk assessment of slope failure considering the variability in soil properties</title><source>Elsevier ScienceDirect Journals</source><creator>Cheng, Hongzhan ; Chen, Jian ; Chen, Renpeng ; Chen, Guoliang ; Zhong, Yu</creator><creatorcontrib>Cheng, Hongzhan ; Chen, Jian ; Chen, Renpeng ; Chen, Guoliang ; Zhong, Yu</creatorcontrib><description>To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2018.07.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Auto-correlation structures ; Autocorrelation ; Correlation ; Correlation analysis ; Failure ; Finite difference method ; Parametric analysis ; Random field ; Reliability ; Risk analysis ; Risk assessment ; Slip mass ; Slope ; Slope failure ; Soil ; Soil properties ; Soils ; Spatial variations ; Variability</subject><ispartof>Computers and geotechnics, 2018-11, Vol.103, p.61-72</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</citedby><cites>FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266352X1830171X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Cheng, Hongzhan</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Chen, Renpeng</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><title>Risk assessment of slope failure considering the variability in soil properties</title><title>Computers and geotechnics</title><description>To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.</description><subject>Anisotropy</subject><subject>Auto-correlation structures</subject><subject>Autocorrelation</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Failure</subject><subject>Finite difference method</subject><subject>Parametric analysis</subject><subject>Random field</subject><subject>Reliability</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Slip mass</subject><subject>Slope</subject><subject>Slope failure</subject><subject>Soil</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Spatial variations</subject><subject>Variability</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QQh43ZqPNWmvRIZfMBiIgnchTU9natfMnG6wf2_Gdu_VuXmf9-U8hNxylnPG1X2Xu7DerCDkgvEyZzpnTJ2RCS-1zLSS8pxMmFAqk4X4uiRXiB1LXFVWE7J89_hDLSIgrmEYaWgp9mEDtLW-30agLgzoG4h-WNHxG-jORm9r3_txT_1AMfiebmIi4ugBr8lFa3uEm9Odks_np4_5a7ZYvrzNHxeZk1KPmWa2nHHOy8bWWtbACtfYSgBvZVlUNTQWNDRVy4UrCsVUbQWbaShbBQBFIeSU3B170_TvFnA0XdjGIU0awQVXWswUS6nimHIxIEZozSb6tY17w5k5uDOdObkzB3eGaZPcJe7hyEF6YechGnQeBgeNj-BG0wT_T8MftZF8Aw</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Cheng, Hongzhan</creator><creator>Chen, Jian</creator><creator>Chen, Renpeng</creator><creator>Chen, Guoliang</creator><creator>Zhong, Yu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201811</creationdate><title>Risk assessment of slope failure considering the variability in soil properties</title><author>Cheng, Hongzhan ; Chen, Jian ; Chen, Renpeng ; Chen, Guoliang ; Zhong, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-70a841118dab73be05cda92e1f3859bedae7ed9f12c55606ba2047e8f6eee5523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Auto-correlation structures</topic><topic>Autocorrelation</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Failure</topic><topic>Finite difference method</topic><topic>Parametric analysis</topic><topic>Random field</topic><topic>Reliability</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Slip mass</topic><topic>Slope</topic><topic>Slope failure</topic><topic>Soil</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Spatial variations</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Hongzhan</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Chen, Renpeng</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Hongzhan</au><au>Chen, Jian</au><au>Chen, Renpeng</au><au>Chen, Guoliang</au><au>Zhong, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk assessment of slope failure considering the variability in soil properties</atitle><jtitle>Computers and geotechnics</jtitle><date>2018-11</date><risdate>2018</risdate><volume>103</volume><spage>61</spage><epage>72</epage><pages>61-72</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>To assess the risk of slope failure, this study employs a rigorous method that is referred to as the random finite difference method (RFDM). The RFDM is capable of considering the spatial variability of soil properties subject to different auto-correlation structures. Comparisons with the collected data are made with respect to two idealized slopes, and a parametric analysis is presented. The results demonstrate that the spatial auto-correlation structures significantly affect the slope failure risk. Depending on the rotated angle, the rotated anisotropy auto-correlation structure shows a dual effect on the reliability of the slope compared to a transverse anisotropy case.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2018.07.006</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2018-11, Vol.103, p.61-72
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_journals_2121672460
source Elsevier ScienceDirect Journals
subjects Anisotropy
Auto-correlation structures
Autocorrelation
Correlation
Correlation analysis
Failure
Finite difference method
Parametric analysis
Random field
Reliability
Risk analysis
Risk assessment
Slip mass
Slope
Slope failure
Soil
Soil properties
Soils
Spatial variations
Variability
title Risk assessment of slope failure considering the variability in soil properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20assessment%20of%20slope%20failure%20considering%20the%20variability%20in%20soil%20properties&rft.jtitle=Computers%20and%20geotechnics&rft.au=Cheng,%20Hongzhan&rft.date=2018-11&rft.volume=103&rft.spage=61&rft.epage=72&rft.pages=61-72&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2018.07.006&rft_dat=%3Cproquest_cross%3E2121672460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121672460&rft_id=info:pmid/&rft_els_id=S0266352X1830171X&rfr_iscdi=true