3D MHD simulation of the double-gradient instability of the magnetotail current sheet
Flapping motion of the current sheet (CS) is an important physical process in the Earth’s magnetotail. The magnetic double-gradient model, which includes both the instability and wave modes, offers a reasonable explanation for the exciting and propagation of the flapping wave. In this paper, we appl...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2018-09, Vol.61 (9), p.1364-1371 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1371 |
---|---|
container_issue | 9 |
container_start_page | 1364 |
container_title | Science China. Technological sciences |
container_volume | 61 |
creator | Duan, AiYing Zhang, Huai Lu, HaoYu |
description | Flapping motion of the current sheet (CS) is an important physical process in the Earth’s magnetotail. The magnetic double-gradient model, which includes both the instability and wave modes, offers a reasonable explanation for the exciting and propagation of the flapping wave. In this paper, we apply an advanced numerical magnetohydrodynamic (MHD) scheme (conservation element and solution element (CESE)-MHD) to simulate the magnetic double-gradient instability in an idealized current sheet that mimics the magnetotail configuration. We initialize the simulations with a numerically relaxed magnetotail equilibrium, in which the normal component of the magnetic field has a tailward gradient. It is confirmed in our simulation that the instability develops in the current layer. The growth rate of the instability yielded from the simulation is very close to the prediction of theory, with a relative deviation of only ten percent. The results demonstrate that the CESE-MHD scheme is very powerful in numerical study of the double-gradient mechanism of the CS flapping mode, and can be used for further investigations of the flapping motion in more realistic CS configurations. |
doi_str_mv | 10.1007/s11431-017-9158-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121642925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121642925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-395c3d79e92fba14d85da9d1dfe1388ecb868d167327bf28b77028f009b78a973</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EElXpA7BFYjb47CS2R9QCRSpiobPlxE7rKk2K7Qx9exyliIlb7obv_jt9CN0DeQRC-FMAyBlgAhxLKATmV2gGopQYJCHXaS55jjmjcIsWIRxIKiYkgXyGtmyVfaxXWXDHodXR9V3WN1nc28z0Q9VavPPaONvFzHUh6sq1Lp5_kaPedTb2Ubs2qwfvRyzsrY136KbRbbCLS5-j7evL13KNN59v78vnDa4ZlBEzWdTMcGklbSoNuRGF0dKAaSwwIWxdiVKY9D2jvGqoqDgnVDSEyIoLLTmbo4cp9-T778GGqA794Lt0UlGgUOZU0iJRMFG170PwtlEn747anxUQNQpUk0CVBKpRoBqT6bQTEtvtrP9L_n_pB-iFcmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121642925</pqid></control><display><type>article</type><title>3D MHD simulation of the double-gradient instability of the magnetotail current sheet</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Duan, AiYing ; Zhang, Huai ; Lu, HaoYu</creator><creatorcontrib>Duan, AiYing ; Zhang, Huai ; Lu, HaoYu</creatorcontrib><description>Flapping motion of the current sheet (CS) is an important physical process in the Earth’s magnetotail. The magnetic double-gradient model, which includes both the instability and wave modes, offers a reasonable explanation for the exciting and propagation of the flapping wave. In this paper, we apply an advanced numerical magnetohydrodynamic (MHD) scheme (conservation element and solution element (CESE)-MHD) to simulate the magnetic double-gradient instability in an idealized current sheet that mimics the magnetotail configuration. We initialize the simulations with a numerically relaxed magnetotail equilibrium, in which the normal component of the magnetic field has a tailward gradient. It is confirmed in our simulation that the instability develops in the current layer. The growth rate of the instability yielded from the simulation is very close to the prediction of theory, with a relative deviation of only ten percent. The results demonstrate that the CESE-MHD scheme is very powerful in numerical study of the double-gradient mechanism of the CS flapping mode, and can be used for further investigations of the flapping motion in more realistic CS configurations.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-017-9158-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Computational fluid dynamics ; Computer simulation ; Configurations ; Engineering ; Flapping ; Fluid flow ; Magnetohydrodynamics ; Mathematical models ; Motion stability ; Wave propagation</subject><ispartof>Science China. Technological sciences, 2018-09, Vol.61 (9), p.1364-1371</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-395c3d79e92fba14d85da9d1dfe1388ecb868d167327bf28b77028f009b78a973</citedby><cites>FETCH-LOGICAL-c316t-395c3d79e92fba14d85da9d1dfe1388ecb868d167327bf28b77028f009b78a973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-017-9158-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-017-9158-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duan, AiYing</creatorcontrib><creatorcontrib>Zhang, Huai</creatorcontrib><creatorcontrib>Lu, HaoYu</creatorcontrib><title>3D MHD simulation of the double-gradient instability of the magnetotail current sheet</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Flapping motion of the current sheet (CS) is an important physical process in the Earth’s magnetotail. The magnetic double-gradient model, which includes both the instability and wave modes, offers a reasonable explanation for the exciting and propagation of the flapping wave. In this paper, we apply an advanced numerical magnetohydrodynamic (MHD) scheme (conservation element and solution element (CESE)-MHD) to simulate the magnetic double-gradient instability in an idealized current sheet that mimics the magnetotail configuration. We initialize the simulations with a numerically relaxed magnetotail equilibrium, in which the normal component of the magnetic field has a tailward gradient. It is confirmed in our simulation that the instability develops in the current layer. The growth rate of the instability yielded from the simulation is very close to the prediction of theory, with a relative deviation of only ten percent. The results demonstrate that the CESE-MHD scheme is very powerful in numerical study of the double-gradient mechanism of the CS flapping mode, and can be used for further investigations of the flapping motion in more realistic CS configurations.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Engineering</subject><subject>Flapping</subject><subject>Fluid flow</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Motion stability</subject><subject>Wave propagation</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EElXpA7BFYjb47CS2R9QCRSpiobPlxE7rKk2K7Qx9exyliIlb7obv_jt9CN0DeQRC-FMAyBlgAhxLKATmV2gGopQYJCHXaS55jjmjcIsWIRxIKiYkgXyGtmyVfaxXWXDHodXR9V3WN1nc28z0Q9VavPPaONvFzHUh6sq1Lp5_kaPedTb2Ubs2qwfvRyzsrY136KbRbbCLS5-j7evL13KNN59v78vnDa4ZlBEzWdTMcGklbSoNuRGF0dKAaSwwIWxdiVKY9D2jvGqoqDgnVDSEyIoLLTmbo4cp9-T778GGqA794Lt0UlGgUOZU0iJRMFG170PwtlEn747anxUQNQpUk0CVBKpRoBqT6bQTEtvtrP9L_n_pB-iFcmQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Duan, AiYing</creator><creator>Zhang, Huai</creator><creator>Lu, HaoYu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>3D MHD simulation of the double-gradient instability of the magnetotail current sheet</title><author>Duan, AiYing ; Zhang, Huai ; Lu, HaoYu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-395c3d79e92fba14d85da9d1dfe1388ecb868d167327bf28b77028f009b78a973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Engineering</topic><topic>Flapping</topic><topic>Fluid flow</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Motion stability</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, AiYing</creatorcontrib><creatorcontrib>Zhang, Huai</creatorcontrib><creatorcontrib>Lu, HaoYu</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, AiYing</au><au>Zhang, Huai</au><au>Lu, HaoYu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D MHD simulation of the double-gradient instability of the magnetotail current sheet</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>61</volume><issue>9</issue><spage>1364</spage><epage>1371</epage><pages>1364-1371</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Flapping motion of the current sheet (CS) is an important physical process in the Earth’s magnetotail. The magnetic double-gradient model, which includes both the instability and wave modes, offers a reasonable explanation for the exciting and propagation of the flapping wave. In this paper, we apply an advanced numerical magnetohydrodynamic (MHD) scheme (conservation element and solution element (CESE)-MHD) to simulate the magnetic double-gradient instability in an idealized current sheet that mimics the magnetotail configuration. We initialize the simulations with a numerically relaxed magnetotail equilibrium, in which the normal component of the magnetic field has a tailward gradient. It is confirmed in our simulation that the instability develops in the current layer. The growth rate of the instability yielded from the simulation is very close to the prediction of theory, with a relative deviation of only ten percent. The results demonstrate that the CESE-MHD scheme is very powerful in numerical study of the double-gradient mechanism of the CS flapping mode, and can be used for further investigations of the flapping motion in more realistic CS configurations.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-017-9158-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2018-09, Vol.61 (9), p.1364-1371 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_proquest_journals_2121642925 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Computer simulation Configurations Engineering Flapping Fluid flow Magnetohydrodynamics Mathematical models Motion stability Wave propagation |
title | 3D MHD simulation of the double-gradient instability of the magnetotail current sheet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20MHD%20simulation%20of%20the%20double-gradient%20instability%20of%20the%20magnetotail%20current%20sheet&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Duan,%20AiYing&rft.date=2018-09-01&rft.volume=61&rft.issue=9&rft.spage=1364&rft.epage=1371&rft.pages=1364-1371&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-017-9158-7&rft_dat=%3Cproquest_cross%3E2121642925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121642925&rft_id=info:pmid/&rfr_iscdi=true |