Anomalies and News

Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of finance (New York) 2018-10, Vol.73 (5), p.1971-2001
Hauptverfasser: ENGELBERG, JOSEPH, MCLEAN, R. DAVID, PONTIFF, JEFFREY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2001
container_issue 5
container_start_page 1971
container_title The Journal of finance (New York)
container_volume 73
creator ENGELBERG, JOSEPH
MCLEAN, R. DAVID
PONTIFF, JEFFREY
description Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival.
doi_str_mv 10.1111/jofi.12718
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2121641981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26656057</jstor_id><sourcerecordid>26656057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</originalsourceid><addsrcrecordid>eNp9j8FLwzAUxoMoWKeX3YWBN6HzvTRJ0-MYTifDXfQc0iaBlm6ZycbYf2-7qke_y7v8ft_jI2SMMMUuT4139RRpjvKCJMgZpIIKvCQJAKUpgqTX5CbGBvpwnpDxbOs3uq1tnOitmbzbY7wlV0630d793BH5XDx_zF_T1fplOZ-t0irjQqauKkzFQXJR6pyWaAoji1LkvKCZMA4ZWicsGi4pwxx16RiUoCXnoA2zOhuRh6F3F_zXwca9avwhbLuXiiJFwbCQ2FGPA1UFH2OwTu1CvdHhpBBUv1n1m9V5cwfjAB_r1p7-IdXberH8de4Hp4l7H_4cKgQXwPPsG1ZDX94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121641981</pqid></control><display><type>article</type><title>Anomalies and News</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>ENGELBERG, JOSEPH ; MCLEAN, R. DAVID ; PONTIFF, JEFFREY</creator><creatorcontrib>ENGELBERG, JOSEPH ; MCLEAN, R. DAVID ; PONTIFF, JEFFREY</creatorcontrib><description>Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival.</description><identifier>ISSN: 0022-1082</identifier><identifier>EISSN: 1540-6261</identifier><identifier>DOI: 10.1111/jofi.12718</identifier><language>eng</language><publisher>Cambridge: Wiley Periodicals, Inc</publisher><subject>Bias ; Data mining ; Earnings ; Earnings announcements ; News ; Rates of return</subject><ispartof>The Journal of finance (New York), 2018-10, Vol.73 (5), p.1971-2001</ispartof><rights>2018 American Finance Association</rights><rights>2018 the American Finance Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</citedby><cites>FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26656057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26656057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>ENGELBERG, JOSEPH</creatorcontrib><creatorcontrib>MCLEAN, R. DAVID</creatorcontrib><creatorcontrib>PONTIFF, JEFFREY</creatorcontrib><title>Anomalies and News</title><title>The Journal of finance (New York)</title><description>Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival.</description><subject>Bias</subject><subject>Data mining</subject><subject>Earnings</subject><subject>Earnings announcements</subject><subject>News</subject><subject>Rates of return</subject><issn>0022-1082</issn><issn>1540-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j8FLwzAUxoMoWKeX3YWBN6HzvTRJ0-MYTifDXfQc0iaBlm6ZycbYf2-7qke_y7v8ft_jI2SMMMUuT4139RRpjvKCJMgZpIIKvCQJAKUpgqTX5CbGBvpwnpDxbOs3uq1tnOitmbzbY7wlV0630d793BH5XDx_zF_T1fplOZ-t0irjQqauKkzFQXJR6pyWaAoji1LkvKCZMA4ZWicsGi4pwxx16RiUoCXnoA2zOhuRh6F3F_zXwca9avwhbLuXiiJFwbCQ2FGPA1UFH2OwTu1CvdHhpBBUv1n1m9V5cwfjAB_r1p7-IdXberH8de4Hp4l7H_4cKgQXwPPsG1ZDX94</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>ENGELBERG, JOSEPH</creator><creator>MCLEAN, R. DAVID</creator><creator>PONTIFF, JEFFREY</creator><general>Wiley Periodicals, Inc</general><general>Blackwell Publishers Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20181001</creationdate><title>Anomalies and News</title><author>ENGELBERG, JOSEPH ; MCLEAN, R. DAVID ; PONTIFF, JEFFREY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Data mining</topic><topic>Earnings</topic><topic>Earnings announcements</topic><topic>News</topic><topic>Rates of return</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ENGELBERG, JOSEPH</creatorcontrib><creatorcontrib>MCLEAN, R. DAVID</creatorcontrib><creatorcontrib>PONTIFF, JEFFREY</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Journal of finance (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ENGELBERG, JOSEPH</au><au>MCLEAN, R. DAVID</au><au>PONTIFF, JEFFREY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalies and News</atitle><jtitle>The Journal of finance (New York)</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>73</volume><issue>5</issue><spage>1971</spage><epage>2001</epage><pages>1971-2001</pages><issn>0022-1082</issn><eissn>1540-6261</eissn><abstract>Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival.</abstract><cop>Cambridge</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1111/jofi.12718</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1082
ispartof The Journal of finance (New York), 2018-10, Vol.73 (5), p.1971-2001
issn 0022-1082
1540-6261
language eng
recordid cdi_proquest_journals_2121641981
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Bias
Data mining
Earnings
Earnings announcements
News
Rates of return
title Anomalies and News
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalies%20and%20News&rft.jtitle=The%20Journal%20of%20finance%20(New%20York)&rft.au=ENGELBERG,%20JOSEPH&rft.date=2018-10-01&rft.volume=73&rft.issue=5&rft.spage=1971&rft.epage=2001&rft.pages=1971-2001&rft.issn=0022-1082&rft.eissn=1540-6261&rft_id=info:doi/10.1111/jofi.12718&rft_dat=%3Cjstor_proqu%3E26656057%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121641981&rft_id=info:pmid/&rft_jstor_id=26656057&rfr_iscdi=true