Anomalies and News
Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several...
Gespeichert in:
Veröffentlicht in: | The Journal of finance (New York) 2018-10, Vol.73 (5), p.1971-2001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2001 |
---|---|
container_issue | 5 |
container_start_page | 1971 |
container_title | The Journal of finance (New York) |
container_volume | 73 |
creator | ENGELBERG, JOSEPH MCLEAN, R. DAVID PONTIFF, JEFFREY |
description | Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival. |
doi_str_mv | 10.1111/jofi.12718 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2121641981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26656057</jstor_id><sourcerecordid>26656057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</originalsourceid><addsrcrecordid>eNp9j8FLwzAUxoMoWKeX3YWBN6HzvTRJ0-MYTifDXfQc0iaBlm6ZycbYf2-7qke_y7v8ft_jI2SMMMUuT4139RRpjvKCJMgZpIIKvCQJAKUpgqTX5CbGBvpwnpDxbOs3uq1tnOitmbzbY7wlV0630d793BH5XDx_zF_T1fplOZ-t0irjQqauKkzFQXJR6pyWaAoji1LkvKCZMA4ZWicsGi4pwxx16RiUoCXnoA2zOhuRh6F3F_zXwca9avwhbLuXiiJFwbCQ2FGPA1UFH2OwTu1CvdHhpBBUv1n1m9V5cwfjAB_r1p7-IdXberH8de4Hp4l7H_4cKgQXwPPsG1ZDX94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121641981</pqid></control><display><type>article</type><title>Anomalies and News</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>ENGELBERG, JOSEPH ; MCLEAN, R. DAVID ; PONTIFF, JEFFREY</creator><creatorcontrib>ENGELBERG, JOSEPH ; MCLEAN, R. DAVID ; PONTIFF, JEFFREY</creatorcontrib><description>Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival.</description><identifier>ISSN: 0022-1082</identifier><identifier>EISSN: 1540-6261</identifier><identifier>DOI: 10.1111/jofi.12718</identifier><language>eng</language><publisher>Cambridge: Wiley Periodicals, Inc</publisher><subject>Bias ; Data mining ; Earnings ; Earnings announcements ; News ; Rates of return</subject><ispartof>The Journal of finance (New York), 2018-10, Vol.73 (5), p.1971-2001</ispartof><rights>2018 American Finance Association</rights><rights>2018 the American Finance Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</citedby><cites>FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26656057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26656057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>ENGELBERG, JOSEPH</creatorcontrib><creatorcontrib>MCLEAN, R. DAVID</creatorcontrib><creatorcontrib>PONTIFF, JEFFREY</creatorcontrib><title>Anomalies and News</title><title>The Journal of finance (New York)</title><description>Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival.</description><subject>Bias</subject><subject>Data mining</subject><subject>Earnings</subject><subject>Earnings announcements</subject><subject>News</subject><subject>Rates of return</subject><issn>0022-1082</issn><issn>1540-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j8FLwzAUxoMoWKeX3YWBN6HzvTRJ0-MYTifDXfQc0iaBlm6ZycbYf2-7qke_y7v8ft_jI2SMMMUuT4139RRpjvKCJMgZpIIKvCQJAKUpgqTX5CbGBvpwnpDxbOs3uq1tnOitmbzbY7wlV0630d793BH5XDx_zF_T1fplOZ-t0irjQqauKkzFQXJR6pyWaAoji1LkvKCZMA4ZWicsGi4pwxx16RiUoCXnoA2zOhuRh6F3F_zXwca9avwhbLuXiiJFwbCQ2FGPA1UFH2OwTu1CvdHhpBBUv1n1m9V5cwfjAB_r1p7-IdXberH8de4Hp4l7H_4cKgQXwPPsG1ZDX94</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>ENGELBERG, JOSEPH</creator><creator>MCLEAN, R. DAVID</creator><creator>PONTIFF, JEFFREY</creator><general>Wiley Periodicals, Inc</general><general>Blackwell Publishers Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20181001</creationdate><title>Anomalies and News</title><author>ENGELBERG, JOSEPH ; MCLEAN, R. DAVID ; PONTIFF, JEFFREY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3568-fc9dc50856ba72b1d9d89b6759236df141ef6e1d5824171abf40b0a8550ad4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Data mining</topic><topic>Earnings</topic><topic>Earnings announcements</topic><topic>News</topic><topic>Rates of return</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ENGELBERG, JOSEPH</creatorcontrib><creatorcontrib>MCLEAN, R. DAVID</creatorcontrib><creatorcontrib>PONTIFF, JEFFREY</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Journal of finance (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ENGELBERG, JOSEPH</au><au>MCLEAN, R. DAVID</au><au>PONTIFF, JEFFREY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalies and News</atitle><jtitle>The Journal of finance (New York)</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>73</volume><issue>5</issue><spage>1971</spage><epage>2001</epage><pages>1971-2001</pages><issn>0022-1082</issn><eissn>1540-6261</eissn><abstract>Using a sample of 97 stock return anomalies, we find that anomaly returns are 50% higher on corporate news days and six times higher on earnings announcement days. These results could be explained by dynamic risk, mispricing due to biased expectations, or data mining. We develop and conduct several unique tests to differentiate between these three explanations. Our results are most consistent with the idea that anomaly returns are driven by biased expectations, which are at least partly corrected upon news arrival.</abstract><cop>Cambridge</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1111/jofi.12718</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1082 |
ispartof | The Journal of finance (New York), 2018-10, Vol.73 (5), p.1971-2001 |
issn | 0022-1082 1540-6261 |
language | eng |
recordid | cdi_proquest_journals_2121641981 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete |
subjects | Bias Data mining Earnings Earnings announcements News Rates of return |
title | Anomalies and News |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalies%20and%20News&rft.jtitle=The%20Journal%20of%20finance%20(New%20York)&rft.au=ENGELBERG,%20JOSEPH&rft.date=2018-10-01&rft.volume=73&rft.issue=5&rft.spage=1971&rft.epage=2001&rft.pages=1971-2001&rft.issn=0022-1082&rft.eissn=1540-6261&rft_id=info:doi/10.1111/jofi.12718&rft_dat=%3Cjstor_proqu%3E26656057%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121641981&rft_id=info:pmid/&rft_jstor_id=26656057&rfr_iscdi=true |