Mathematical model for estimation of meteoroid dark flight trajectory

This paper is concerned with mathematical model for numerical simulation of meteoroid dynamics. The simulations of bolide ballistics are carried out via hard sphere approximation. System of differential equations for movement and heat transfer is solved in Lagrange variables via Runge-Kutta methods....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vinnikov, V. V., Gritsevich, M. I., Turchak, L. I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1773
creator Vinnikov, V. V.
Gritsevich, M. I.
Turchak, L. I.
description This paper is concerned with mathematical model for numerical simulation of meteoroid dynamics. The simulations of bolide ballistics are carried out via hard sphere approximation. System of differential equations for movement and heat transfer is solved in Lagrange variables via Runge-Kutta methods. The drag force of atmospheric air is computed via Henderson formula, valid for wide ranges of Reynolds and Mach numbers. The parameters of surrounding gas are obtained from standard atmosphere model. The impact pressure is computed taking into account entropy jump through bow head shockwave and consequent isentropic deceleration of the flow in the vicinity of streamlined sphere. Meteoroid fragmentation is modeled as sequential division of parent body into two parts using random weighting coefficient for parent mass. The condition for fragmentation event occur when the hemisphere-averaged value of impact pressure exceeds the threshold of relative body strength, which nonlinearly depends on ration of initial meteoroid mass to current mass of considered fragment. To compute trajectory divergence for newly-formed splinters we introduce the repulsive force, dependent on impact pressure, cross sectional areas of mutually repulsing bodies and distances between them. The set of mathematical models is implemented as the program complex. Preliminary computational results show that fragmentation altitude, terminal velocities and maximum splinter masses are in good agreement with corresponding observations and measurements.
doi_str_mv 10.1063/1.4965020
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121633520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121633520</sourcerecordid><originalsourceid>FETCH-LOGICAL-p323t-950dea8eaa28373f5b9cea410a6b57889f19e21f32552825ef45f7a9aec347283</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A1k2w2m6NI_QMVLwrewnR3YrdumzWbCv32bm3Bm6eBx2_mzXuMXYKYgCjUDUxyW2ghxREbgdaQmQKKYzYSwuaZzNX7KTvr-6UQ0hpTjtj0GdOCVpiaClu-CjW13IfIqU_NTg1rHjxfUaIQQ1PzGuMn923zsUg8RVxSlULcnrMTj21PF4c5Zm_309e7x2z28vB0dzvLOiVVyqwWNWFJiLJURnk9txVhDgKLuTZlaT1YkuCV1FqWUpPPtTdokSqVm2FnzK72d7sYvjbDj24ZNnE9WDoJEgqltBQDdb2n-qpJvxlcF4c0cetAuF1NDtyhpv_g7xD_QNfVXv0AIV9oPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121633520</pqid></control><display><type>conference_proceeding</type><title>Mathematical model for estimation of meteoroid dark flight trajectory</title><source>AIP Journals Complete</source><creator>Vinnikov, V. V. ; Gritsevich, M. I. ; Turchak, L. I.</creator><contributor>Todorov, Michail D.</contributor><creatorcontrib>Vinnikov, V. V. ; Gritsevich, M. I. ; Turchak, L. I. ; Todorov, Michail D.</creatorcontrib><description>This paper is concerned with mathematical model for numerical simulation of meteoroid dynamics. The simulations of bolide ballistics are carried out via hard sphere approximation. System of differential equations for movement and heat transfer is solved in Lagrange variables via Runge-Kutta methods. The drag force of atmospheric air is computed via Henderson formula, valid for wide ranges of Reynolds and Mach numbers. The parameters of surrounding gas are obtained from standard atmosphere model. The impact pressure is computed taking into account entropy jump through bow head shockwave and consequent isentropic deceleration of the flow in the vicinity of streamlined sphere. Meteoroid fragmentation is modeled as sequential division of parent body into two parts using random weighting coefficient for parent mass. The condition for fragmentation event occur when the hemisphere-averaged value of impact pressure exceeds the threshold of relative body strength, which nonlinearly depends on ration of initial meteoroid mass to current mass of considered fragment. To compute trajectory divergence for newly-formed splinters we introduce the repulsive force, dependent on impact pressure, cross sectional areas of mutually repulsing bodies and distances between them. The set of mathematical models is implemented as the program complex. Preliminary computational results show that fragmentation altitude, terminal velocities and maximum splinter masses are in good agreement with corresponding observations and measurements.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4965020</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atmospheric models ; Ballistics ; Computation ; Computer simulation ; Deceleration ; Differential equations ; Divergence ; Drag ; Fragmentation ; Impact loads ; Mathematical models ; Meteors &amp; meteorites ; Pressure dependence ; Runge-Kutta method ; Trajectories</subject><ispartof>AIP conference proceedings, 2016, Vol.1773 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4965020$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Todorov, Michail D.</contributor><creatorcontrib>Vinnikov, V. V.</creatorcontrib><creatorcontrib>Gritsevich, M. I.</creatorcontrib><creatorcontrib>Turchak, L. I.</creatorcontrib><title>Mathematical model for estimation of meteoroid dark flight trajectory</title><title>AIP conference proceedings</title><description>This paper is concerned with mathematical model for numerical simulation of meteoroid dynamics. The simulations of bolide ballistics are carried out via hard sphere approximation. System of differential equations for movement and heat transfer is solved in Lagrange variables via Runge-Kutta methods. The drag force of atmospheric air is computed via Henderson formula, valid for wide ranges of Reynolds and Mach numbers. The parameters of surrounding gas are obtained from standard atmosphere model. The impact pressure is computed taking into account entropy jump through bow head shockwave and consequent isentropic deceleration of the flow in the vicinity of streamlined sphere. Meteoroid fragmentation is modeled as sequential division of parent body into two parts using random weighting coefficient for parent mass. The condition for fragmentation event occur when the hemisphere-averaged value of impact pressure exceeds the threshold of relative body strength, which nonlinearly depends on ration of initial meteoroid mass to current mass of considered fragment. To compute trajectory divergence for newly-formed splinters we introduce the repulsive force, dependent on impact pressure, cross sectional areas of mutually repulsing bodies and distances between them. The set of mathematical models is implemented as the program complex. Preliminary computational results show that fragmentation altitude, terminal velocities and maximum splinter masses are in good agreement with corresponding observations and measurements.</description><subject>Atmospheric models</subject><subject>Ballistics</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Deceleration</subject><subject>Differential equations</subject><subject>Divergence</subject><subject>Drag</subject><subject>Fragmentation</subject><subject>Impact loads</subject><subject>Mathematical models</subject><subject>Meteors &amp; meteorites</subject><subject>Pressure dependence</subject><subject>Runge-Kutta method</subject><subject>Trajectories</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A1k2w2m6NI_QMVLwrewnR3YrdumzWbCv32bm3Bm6eBx2_mzXuMXYKYgCjUDUxyW2ghxREbgdaQmQKKYzYSwuaZzNX7KTvr-6UQ0hpTjtj0GdOCVpiaClu-CjW13IfIqU_NTg1rHjxfUaIQQ1PzGuMn923zsUg8RVxSlULcnrMTj21PF4c5Zm_309e7x2z28vB0dzvLOiVVyqwWNWFJiLJURnk9txVhDgKLuTZlaT1YkuCV1FqWUpPPtTdokSqVm2FnzK72d7sYvjbDj24ZNnE9WDoJEgqltBQDdb2n-qpJvxlcF4c0cetAuF1NDtyhpv_g7xD_QNfVXv0AIV9oPw</recordid><startdate>20161013</startdate><enddate>20161013</enddate><creator>Vinnikov, V. V.</creator><creator>Gritsevich, M. I.</creator><creator>Turchak, L. I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161013</creationdate><title>Mathematical model for estimation of meteoroid dark flight trajectory</title><author>Vinnikov, V. V. ; Gritsevich, M. I. ; Turchak, L. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p323t-950dea8eaa28373f5b9cea410a6b57889f19e21f32552825ef45f7a9aec347283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric models</topic><topic>Ballistics</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Deceleration</topic><topic>Differential equations</topic><topic>Divergence</topic><topic>Drag</topic><topic>Fragmentation</topic><topic>Impact loads</topic><topic>Mathematical models</topic><topic>Meteors &amp; meteorites</topic><topic>Pressure dependence</topic><topic>Runge-Kutta method</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinnikov, V. V.</creatorcontrib><creatorcontrib>Gritsevich, M. I.</creatorcontrib><creatorcontrib>Turchak, L. I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinnikov, V. V.</au><au>Gritsevich, M. I.</au><au>Turchak, L. I.</au><au>Todorov, Michail D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mathematical model for estimation of meteoroid dark flight trajectory</atitle><btitle>AIP conference proceedings</btitle><date>2016-10-13</date><risdate>2016</risdate><volume>1773</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper is concerned with mathematical model for numerical simulation of meteoroid dynamics. The simulations of bolide ballistics are carried out via hard sphere approximation. System of differential equations for movement and heat transfer is solved in Lagrange variables via Runge-Kutta methods. The drag force of atmospheric air is computed via Henderson formula, valid for wide ranges of Reynolds and Mach numbers. The parameters of surrounding gas are obtained from standard atmosphere model. The impact pressure is computed taking into account entropy jump through bow head shockwave and consequent isentropic deceleration of the flow in the vicinity of streamlined sphere. Meteoroid fragmentation is modeled as sequential division of parent body into two parts using random weighting coefficient for parent mass. The condition for fragmentation event occur when the hemisphere-averaged value of impact pressure exceeds the threshold of relative body strength, which nonlinearly depends on ration of initial meteoroid mass to current mass of considered fragment. To compute trajectory divergence for newly-formed splinters we introduce the repulsive force, dependent on impact pressure, cross sectional areas of mutually repulsing bodies and distances between them. The set of mathematical models is implemented as the program complex. Preliminary computational results show that fragmentation altitude, terminal velocities and maximum splinter masses are in good agreement with corresponding observations and measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4965020</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1773 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2121633520
source AIP Journals Complete
subjects Atmospheric models
Ballistics
Computation
Computer simulation
Deceleration
Differential equations
Divergence
Drag
Fragmentation
Impact loads
Mathematical models
Meteors & meteorites
Pressure dependence
Runge-Kutta method
Trajectories
title Mathematical model for estimation of meteoroid dark flight trajectory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mathematical%20model%20for%20estimation%20of%20meteoroid%20dark%20flight%20trajectory&rft.btitle=AIP%20conference%20proceedings&rft.au=Vinnikov,%20V.%20V.&rft.date=2016-10-13&rft.volume=1773&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4965020&rft_dat=%3Cproquest_scita%3E2121633520%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121633520&rft_id=info:pmid/&rfr_iscdi=true