The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine
We have investigated the S 0 → S 1 UV vibronic spectrum and time-resolved S 1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delay...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-10, Vol.145 (13), p.134307-134307 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134307 |
---|---|
container_issue | 13 |
container_start_page | 134307 |
container_title | The Journal of chemical physics |
container_volume | 145 |
creator | Trachsel, Maria A. Wiedmer, Timo Blaser, Susan Frey, Hans-Martin Li, Quansong Ruiz-Barragan, Sergi Blancafort, Lluís Leutwyler, Samuel |
description | We have investigated the S
0 → S
1 UV vibronic spectrum and time-resolved S
1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm−1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1
ππ
∗ excitation predicted by the calculations. The methyl torsion and
ν
1
′
(butterfly) vibrations are strongly coupled, in the S
1 state. The S
0 → S
1 vibronic spectrum breaks off at a vibrational excess energy Eexc
∼ 500 cm−1, indicating that a barrier in front of the ethylene-type S
1⇝S
0 conical intersection is exceeded, which is calculated to lie at Eexc
= 366 cm−1. The S
1⇝S
0 internal conversion rate constant increases from kIC
= 2 ⋅ 109 s−1 near the S
1(v = 0) level to 1 ⋅ 1011 s−1 at Eexc
= 516 cm−1. The 1
ππ
∗ state of 1MCyt also relaxes into the lower-lying triplet T
1 (3
ππ
∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm−1. The ISC rate constant is 10–100 times lower than kIC
; it increases from kISC
= 2 ⋅ 108 s−1 near S
1(v = 0) to kISC
= 2 ⋅ 109 s−1 at Eexc
= 516 cm−1. The T
1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm−1. The T
2 (3
nπ
∗) state lies >1500 cm−1 above S
1(v = 0), so S
1⇝T
2 ISC cannot occur, despite the large SOC parameter of 10.6 cm−1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S
0 → S
1 spectrum. The effect of methylation on the radiationless decay to S
0 and ISC to T
1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms. |
doi_str_mv | 10.1063/1.4964091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121633015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835646206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-33182ea7b2f2ca91567bb10ab6d92b83194f21dda98ccb20b3d445630d0da05f3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EotuFAy-AInGhqCkztuMkR1S1UKkSl3K2HHuiepXEi-2sum9Pyi5UQqIHy7b8zS_PfIy9Q7hAUOIzXshWSWjxBVshNG1ZqxZeshUAx7JVoE7YaUobAMCay9fshNd1wyXnKzbc3VNBD9ZncmXKJlORcpxtniOdFzvfRZN9mNJ5Mfiesh9pOZrJFVOYonF-ed1R4faTGb1NReiLDeXShjCQK7AcKd_vB7vPIfmJ3rBXvRkSvT3ua_bj-uru8lt5-_3rzeWX29JKBbkUAhtOpu54z61psVJ11yGYTrmWd43AVvYcnTNtY23HoRNOykoJcOAMVL1YMzzk2jRbHclStCbrYPzT5XFxqLkWXIIQS83HQ802hp8zpaxHnywNg5kozEljIyolFV_mvWYf_kE3YY7T0pHmyFEJAVgt1NnxEzGkFKnX2-hHE_caQT9q06iP2hb2_TFx7kZyf8k_nhbg0wFIi6nfRp5N-y-8C_EJ1FvXi1_0GK31</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121633015</pqid></control><display><type>article</type><title>The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine</title><source>AIP Journals Complete</source><source>Recercat</source><source>Alma/SFX Local Collection</source><creator>Trachsel, Maria A. ; Wiedmer, Timo ; Blaser, Susan ; Frey, Hans-Martin ; Li, Quansong ; Ruiz-Barragan, Sergi ; Blancafort, Lluís ; Leutwyler, Samuel</creator><creatorcontrib>Trachsel, Maria A. ; Wiedmer, Timo ; Blaser, Susan ; Frey, Hans-Martin ; Li, Quansong ; Ruiz-Barragan, Sergi ; Blancafort, Lluís ; Leutwyler, Samuel</creatorcontrib><description>We have investigated the S
0 → S
1 UV vibronic spectrum and time-resolved S
1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm−1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1
ππ
∗ excitation predicted by the calculations. The methyl torsion and
ν
1
′
(butterfly) vibrations are strongly coupled, in the S
1 state. The S
0 → S
1 vibronic spectrum breaks off at a vibrational excess energy Eexc
∼ 500 cm−1, indicating that a barrier in front of the ethylene-type S
1⇝S
0 conical intersection is exceeded, which is calculated to lie at Eexc
= 366 cm−1. The S
1⇝S
0 internal conversion rate constant increases from kIC
= 2 ⋅ 109 s−1 near the S
1(v = 0) level to 1 ⋅ 1011 s−1 at Eexc
= 516 cm−1. The 1
ππ
∗ state of 1MCyt also relaxes into the lower-lying triplet T
1 (3
ππ
∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm−1. The ISC rate constant is 10–100 times lower than kIC
; it increases from kISC
= 2 ⋅ 108 s−1 near S
1(v = 0) to kISC
= 2 ⋅ 109 s−1 at Eexc
= 516 cm−1. The T
1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm−1. The T
2 (3
nπ
∗) state lies >1500 cm−1 above S
1(v = 0), so S
1⇝T
2 ISC cannot occur, despite the large SOC parameter of 10.6 cm−1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S
0 → S
1 spectrum. The effect of methylation on the radiationless decay to S
0 and ISC to T
1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4964091</identifier><identifier>PMID: 27782422</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adiabatic flow ; Coupling (molecular) ; Dynamic structural analysis ; Energy conversion efficiency ; Internal conversion ; Ionització ; Ionization ; Mathematical analysis ; Methylation ; Perturbation methods ; Photoionization ; Physics ; Radiació ultraviolada ; Rings (mathematics) ; Spin-orbit interactions ; Ultraviolet radiation</subject><ispartof>The Journal of chemical physics, 2016-10, Vol.145 (13), p.134307-134307</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><rights>Tots els drets reservats info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-33182ea7b2f2ca91567bb10ab6d92b83194f21dda98ccb20b3d445630d0da05f3</citedby><cites>FETCH-LOGICAL-c460t-33182ea7b2f2ca91567bb10ab6d92b83194f21dda98ccb20b3d445630d0da05f3</cites><orcidid>0000-0003-1595-6104 ; 0000-0002-0003-5540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4964091$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,26953,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27782422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trachsel, Maria A.</creatorcontrib><creatorcontrib>Wiedmer, Timo</creatorcontrib><creatorcontrib>Blaser, Susan</creatorcontrib><creatorcontrib>Frey, Hans-Martin</creatorcontrib><creatorcontrib>Li, Quansong</creatorcontrib><creatorcontrib>Ruiz-Barragan, Sergi</creatorcontrib><creatorcontrib>Blancafort, Lluís</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><title>The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have investigated the S
0 → S
1 UV vibronic spectrum and time-resolved S
1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm−1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1
ππ
∗ excitation predicted by the calculations. The methyl torsion and
ν
1
′
(butterfly) vibrations are strongly coupled, in the S
1 state. The S
0 → S
1 vibronic spectrum breaks off at a vibrational excess energy Eexc
∼ 500 cm−1, indicating that a barrier in front of the ethylene-type S
1⇝S
0 conical intersection is exceeded, which is calculated to lie at Eexc
= 366 cm−1. The S
1⇝S
0 internal conversion rate constant increases from kIC
= 2 ⋅ 109 s−1 near the S
1(v = 0) level to 1 ⋅ 1011 s−1 at Eexc
= 516 cm−1. The 1
ππ
∗ state of 1MCyt also relaxes into the lower-lying triplet T
1 (3
ππ
∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm−1. The ISC rate constant is 10–100 times lower than kIC
; it increases from kISC
= 2 ⋅ 108 s−1 near S
1(v = 0) to kISC
= 2 ⋅ 109 s−1 at Eexc
= 516 cm−1. The T
1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm−1. The T
2 (3
nπ
∗) state lies >1500 cm−1 above S
1(v = 0), so S
1⇝T
2 ISC cannot occur, despite the large SOC parameter of 10.6 cm−1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S
0 → S
1 spectrum. The effect of methylation on the radiationless decay to S
0 and ISC to T
1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.</description><subject>Adiabatic flow</subject><subject>Coupling (molecular)</subject><subject>Dynamic structural analysis</subject><subject>Energy conversion efficiency</subject><subject>Internal conversion</subject><subject>Ionització</subject><subject>Ionization</subject><subject>Mathematical analysis</subject><subject>Methylation</subject><subject>Perturbation methods</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Radiació ultraviolada</subject><subject>Rings (mathematics)</subject><subject>Spin-orbit interactions</subject><subject>Ultraviolet radiation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kcFu1DAQhi0EotuFAy-AInGhqCkztuMkR1S1UKkSl3K2HHuiepXEi-2sum9Pyi5UQqIHy7b8zS_PfIy9Q7hAUOIzXshWSWjxBVshNG1ZqxZeshUAx7JVoE7YaUobAMCay9fshNd1wyXnKzbc3VNBD9ZncmXKJlORcpxtniOdFzvfRZN9mNJ5Mfiesh9pOZrJFVOYonF-ed1R4faTGb1NReiLDeXShjCQK7AcKd_vB7vPIfmJ3rBXvRkSvT3ua_bj-uru8lt5-_3rzeWX29JKBbkUAhtOpu54z61psVJ11yGYTrmWd43AVvYcnTNtY23HoRNOykoJcOAMVL1YMzzk2jRbHclStCbrYPzT5XFxqLkWXIIQS83HQ802hp8zpaxHnywNg5kozEljIyolFV_mvWYf_kE3YY7T0pHmyFEJAVgt1NnxEzGkFKnX2-hHE_caQT9q06iP2hb2_TFx7kZyf8k_nhbg0wFIi6nfRp5N-y-8C_EJ1FvXi1_0GK31</recordid><startdate>20161007</startdate><enddate>20161007</enddate><creator>Trachsel, Maria A.</creator><creator>Wiedmer, Timo</creator><creator>Blaser, Susan</creator><creator>Frey, Hans-Martin</creator><creator>Li, Quansong</creator><creator>Ruiz-Barragan, Sergi</creator><creator>Blancafort, Lluís</creator><creator>Leutwyler, Samuel</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0003-1595-6104</orcidid><orcidid>https://orcid.org/0000-0002-0003-5540</orcidid></search><sort><creationdate>20161007</creationdate><title>The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine</title><author>Trachsel, Maria A. ; Wiedmer, Timo ; Blaser, Susan ; Frey, Hans-Martin ; Li, Quansong ; Ruiz-Barragan, Sergi ; Blancafort, Lluís ; Leutwyler, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-33182ea7b2f2ca91567bb10ab6d92b83194f21dda98ccb20b3d445630d0da05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiabatic flow</topic><topic>Coupling (molecular)</topic><topic>Dynamic structural analysis</topic><topic>Energy conversion efficiency</topic><topic>Internal conversion</topic><topic>Ionització</topic><topic>Ionization</topic><topic>Mathematical analysis</topic><topic>Methylation</topic><topic>Perturbation methods</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Radiació ultraviolada</topic><topic>Rings (mathematics)</topic><topic>Spin-orbit interactions</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trachsel, Maria A.</creatorcontrib><creatorcontrib>Wiedmer, Timo</creatorcontrib><creatorcontrib>Blaser, Susan</creatorcontrib><creatorcontrib>Frey, Hans-Martin</creatorcontrib><creatorcontrib>Li, Quansong</creatorcontrib><creatorcontrib>Ruiz-Barragan, Sergi</creatorcontrib><creatorcontrib>Blancafort, Lluís</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trachsel, Maria A.</au><au>Wiedmer, Timo</au><au>Blaser, Susan</au><au>Frey, Hans-Martin</au><au>Li, Quansong</au><au>Ruiz-Barragan, Sergi</au><au>Blancafort, Lluís</au><au>Leutwyler, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-10-07</date><risdate>2016</risdate><volume>145</volume><issue>13</issue><spage>134307</spage><epage>134307</epage><pages>134307-134307</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We have investigated the S
0 → S
1 UV vibronic spectrum and time-resolved S
1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm−1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1
ππ
∗ excitation predicted by the calculations. The methyl torsion and
ν
1
′
(butterfly) vibrations are strongly coupled, in the S
1 state. The S
0 → S
1 vibronic spectrum breaks off at a vibrational excess energy Eexc
∼ 500 cm−1, indicating that a barrier in front of the ethylene-type S
1⇝S
0 conical intersection is exceeded, which is calculated to lie at Eexc
= 366 cm−1. The S
1⇝S
0 internal conversion rate constant increases from kIC
= 2 ⋅ 109 s−1 near the S
1(v = 0) level to 1 ⋅ 1011 s−1 at Eexc
= 516 cm−1. The 1
ππ
∗ state of 1MCyt also relaxes into the lower-lying triplet T
1 (3
ππ
∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm−1. The ISC rate constant is 10–100 times lower than kIC
; it increases from kISC
= 2 ⋅ 108 s−1 near S
1(v = 0) to kISC
= 2 ⋅ 109 s−1 at Eexc
= 516 cm−1. The T
1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm−1. The T
2 (3
nπ
∗) state lies >1500 cm−1 above S
1(v = 0), so S
1⇝T
2 ISC cannot occur, despite the large SOC parameter of 10.6 cm−1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S
0 → S
1 spectrum. The effect of methylation on the radiationless decay to S
0 and ISC to T
1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27782422</pmid><doi>10.1063/1.4964091</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1595-6104</orcidid><orcidid>https://orcid.org/0000-0002-0003-5540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-10, Vol.145 (13), p.134307-134307 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2121633015 |
source | AIP Journals Complete; Recercat; Alma/SFX Local Collection |
subjects | Adiabatic flow Coupling (molecular) Dynamic structural analysis Energy conversion efficiency Internal conversion Ionització Ionization Mathematical analysis Methylation Perturbation methods Photoionization Physics Radiació ultraviolada Rings (mathematics) Spin-orbit interactions Ultraviolet radiation |
title | The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20excited-state%20structure,%20vibrations,%20lifetimes,%20and%20nonradiative%20dynamics%20of%20jet-cooled%201-methylcytosine&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Trachsel,%20Maria%20A.&rft.date=2016-10-07&rft.volume=145&rft.issue=13&rft.spage=134307&rft.epage=134307&rft.pages=134307-134307&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4964091&rft_dat=%3Cproquest_cross%3E1835646206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121633015&rft_id=info:pmid/27782422&rfr_iscdi=true |