Optimal recombination in genetic algorithms for flowshop scheduling problems
The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criter...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1776 |
creator | Kovalenko, Julia |
description | The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity. |
doi_str_mv | 10.1063/1.4965326 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121597363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121597363</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-2b288786b3e4577cc59b2bc923646cfa89fd20e5c5490bccbddf2b7ace969d443</originalsourceid><addsrcrecordid>eNp9kEtLAzEAhIMoWB8H_0HAm7A172yOUnxBoRcFb2GTTdqU3c2apIr_3tUWvHmayzczzABwhdEcI0Fv8ZwpwSkRR2CGOceVFFgcgxlCilWE0bdTcJbzFiGipKxnYLkaS-ibDiZnY2_C0JQQBxgGuHaDK8HCplvHFMqmz9DHBH0XP_MmjjDbjWt3XRjWcEzRdK7PF-DEN112lwc9B68P9y-Lp2q5enxe3C2rkXBaKmJIXctaGOoYl9JargwxVhEqmLC-qZVvCXLccqaQsda0rSdGNtYpoVrG6Dm43udOxe87l4vexl0apkpNMMFcSSroRN3sqWxD-Z2lxzRtTV_6IyaN9eEpPbb-Pxgj_XPtn4F-A7m3bEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121597363</pqid></control><display><type>conference_proceeding</type><title>Optimal recombination in genetic algorithms for flowshop scheduling problems</title><source>AIP Journals Complete</source><creator>Kovalenko, Julia</creator><contributor>Dell’Accio, Francesco ; Sergeyev, Yaroslav D. ; Mukhametzhanov, Marat S. ; Kvasov, Dmitri E.</contributor><creatorcontrib>Kovalenko, Julia ; Dell’Accio, Francesco ; Sergeyev, Yaroslav D. ; Mukhametzhanov, Marat S. ; Kvasov, Dmitri E.</creatorcontrib><description>The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4965326</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Criteria ; Enumeration ; Genetic algorithms ; Job shops ; Lateness ; Permutations ; Production scheduling ; Scheduling</subject><ispartof>AIP Conference Proceedings, 2016, Vol.1776 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4965326$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Dell’Accio, Francesco</contributor><contributor>Sergeyev, Yaroslav D.</contributor><contributor>Mukhametzhanov, Marat S.</contributor><contributor>Kvasov, Dmitri E.</contributor><creatorcontrib>Kovalenko, Julia</creatorcontrib><title>Optimal recombination in genetic algorithms for flowshop scheduling problems</title><title>AIP Conference Proceedings</title><description>The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.</description><subject>Algorithms</subject><subject>Criteria</subject><subject>Enumeration</subject><subject>Genetic algorithms</subject><subject>Job shops</subject><subject>Lateness</subject><subject>Permutations</subject><subject>Production scheduling</subject><subject>Scheduling</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEAhIMoWB8H_0HAm7A172yOUnxBoRcFb2GTTdqU3c2apIr_3tUWvHmayzczzABwhdEcI0Fv8ZwpwSkRR2CGOceVFFgcgxlCilWE0bdTcJbzFiGipKxnYLkaS-ibDiZnY2_C0JQQBxgGuHaDK8HCplvHFMqmz9DHBH0XP_MmjjDbjWt3XRjWcEzRdK7PF-DEN112lwc9B68P9y-Lp2q5enxe3C2rkXBaKmJIXctaGOoYl9JargwxVhEqmLC-qZVvCXLccqaQsda0rSdGNtYpoVrG6Dm43udOxe87l4vexl0apkpNMMFcSSroRN3sqWxD-Z2lxzRtTV_6IyaN9eEpPbb-Pxgj_XPtn4F-A7m3bEQ</recordid><startdate>20161020</startdate><enddate>20161020</enddate><creator>Kovalenko, Julia</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161020</creationdate><title>Optimal recombination in genetic algorithms for flowshop scheduling problems</title><author>Kovalenko, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-2b288786b3e4577cc59b2bc923646cfa89fd20e5c5490bccbddf2b7ace969d443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Criteria</topic><topic>Enumeration</topic><topic>Genetic algorithms</topic><topic>Job shops</topic><topic>Lateness</topic><topic>Permutations</topic><topic>Production scheduling</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovalenko, Julia</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalenko, Julia</au><au>Dell’Accio, Francesco</au><au>Sergeyev, Yaroslav D.</au><au>Mukhametzhanov, Marat S.</au><au>Kvasov, Dmitri E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal recombination in genetic algorithms for flowshop scheduling problems</atitle><btitle>AIP Conference Proceedings</btitle><date>2016-10-20</date><risdate>2016</risdate><volume>1776</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4965326</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2016, Vol.1776 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2121597363 |
source | AIP Journals Complete |
subjects | Algorithms Criteria Enumeration Genetic algorithms Job shops Lateness Permutations Production scheduling Scheduling |
title | Optimal recombination in genetic algorithms for flowshop scheduling problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20recombination%20in%20genetic%20algorithms%20for%20flowshop%20scheduling%20problems&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Kovalenko,%20Julia&rft.date=2016-10-20&rft.volume=1776&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4965326&rft_dat=%3Cproquest_scita%3E2121597363%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121597363&rft_id=info:pmid/&rfr_iscdi=true |