Optimal recombination in genetic algorithms for flowshop scheduling problems

The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kovalenko, Julia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1776
creator Kovalenko, Julia
description The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.
doi_str_mv 10.1063/1.4965326
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121597363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121597363</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-2b288786b3e4577cc59b2bc923646cfa89fd20e5c5490bccbddf2b7ace969d443</originalsourceid><addsrcrecordid>eNp9kEtLAzEAhIMoWB8H_0HAm7A172yOUnxBoRcFb2GTTdqU3c2apIr_3tUWvHmayzczzABwhdEcI0Fv8ZwpwSkRR2CGOceVFFgcgxlCilWE0bdTcJbzFiGipKxnYLkaS-ibDiZnY2_C0JQQBxgGuHaDK8HCplvHFMqmz9DHBH0XP_MmjjDbjWt3XRjWcEzRdK7PF-DEN112lwc9B68P9y-Lp2q5enxe3C2rkXBaKmJIXctaGOoYl9JargwxVhEqmLC-qZVvCXLccqaQsda0rSdGNtYpoVrG6Dm43udOxe87l4vexl0apkpNMMFcSSroRN3sqWxD-Z2lxzRtTV_6IyaN9eEpPbb-Pxgj_XPtn4F-A7m3bEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121597363</pqid></control><display><type>conference_proceeding</type><title>Optimal recombination in genetic algorithms for flowshop scheduling problems</title><source>AIP Journals Complete</source><creator>Kovalenko, Julia</creator><contributor>Dell’Accio, Francesco ; Sergeyev, Yaroslav D. ; Mukhametzhanov, Marat S. ; Kvasov, Dmitri E.</contributor><creatorcontrib>Kovalenko, Julia ; Dell’Accio, Francesco ; Sergeyev, Yaroslav D. ; Mukhametzhanov, Marat S. ; Kvasov, Dmitri E.</creatorcontrib><description>The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4965326</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Criteria ; Enumeration ; Genetic algorithms ; Job shops ; Lateness ; Permutations ; Production scheduling ; Scheduling</subject><ispartof>AIP Conference Proceedings, 2016, Vol.1776 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4965326$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Dell’Accio, Francesco</contributor><contributor>Sergeyev, Yaroslav D.</contributor><contributor>Mukhametzhanov, Marat S.</contributor><contributor>Kvasov, Dmitri E.</contributor><creatorcontrib>Kovalenko, Julia</creatorcontrib><title>Optimal recombination in genetic algorithms for flowshop scheduling problems</title><title>AIP Conference Proceedings</title><description>The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.</description><subject>Algorithms</subject><subject>Criteria</subject><subject>Enumeration</subject><subject>Genetic algorithms</subject><subject>Job shops</subject><subject>Lateness</subject><subject>Permutations</subject><subject>Production scheduling</subject><subject>Scheduling</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEAhIMoWB8H_0HAm7A172yOUnxBoRcFb2GTTdqU3c2apIr_3tUWvHmayzczzABwhdEcI0Fv8ZwpwSkRR2CGOceVFFgcgxlCilWE0bdTcJbzFiGipKxnYLkaS-ibDiZnY2_C0JQQBxgGuHaDK8HCplvHFMqmz9DHBH0XP_MmjjDbjWt3XRjWcEzRdK7PF-DEN112lwc9B68P9y-Lp2q5enxe3C2rkXBaKmJIXctaGOoYl9JargwxVhEqmLC-qZVvCXLccqaQsda0rSdGNtYpoVrG6Dm43udOxe87l4vexl0apkpNMMFcSSroRN3sqWxD-Z2lxzRtTV_6IyaN9eEpPbb-Pxgj_XPtn4F-A7m3bEQ</recordid><startdate>20161020</startdate><enddate>20161020</enddate><creator>Kovalenko, Julia</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161020</creationdate><title>Optimal recombination in genetic algorithms for flowshop scheduling problems</title><author>Kovalenko, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-2b288786b3e4577cc59b2bc923646cfa89fd20e5c5490bccbddf2b7ace969d443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Criteria</topic><topic>Enumeration</topic><topic>Genetic algorithms</topic><topic>Job shops</topic><topic>Lateness</topic><topic>Permutations</topic><topic>Production scheduling</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovalenko, Julia</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalenko, Julia</au><au>Dell’Accio, Francesco</au><au>Sergeyev, Yaroslav D.</au><au>Mukhametzhanov, Marat S.</au><au>Kvasov, Dmitri E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal recombination in genetic algorithms for flowshop scheduling problems</atitle><btitle>AIP Conference Proceedings</btitle><date>2016-10-20</date><risdate>2016</risdate><volume>1776</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4965326</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2016, Vol.1776 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2121597363
source AIP Journals Complete
subjects Algorithms
Criteria
Enumeration
Genetic algorithms
Job shops
Lateness
Permutations
Production scheduling
Scheduling
title Optimal recombination in genetic algorithms for flowshop scheduling problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20recombination%20in%20genetic%20algorithms%20for%20flowshop%20scheduling%20problems&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Kovalenko,%20Julia&rft.date=2016-10-20&rft.volume=1776&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4965326&rft_dat=%3Cproquest_scita%3E2121597363%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121597363&rft_id=info:pmid/&rfr_iscdi=true