The probability distribution model of air pollution index and its dominants in Kuala Lumpur

This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AL-Dhurafi, Nasr Ahmed, Razali, Ahmad Mahir, Masseran, Nurulkamal, Zamzuri, Zamira Hasanah
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1784
creator AL-Dhurafi, Nasr Ahmed
Razali, Ahmad Mahir
Masseran, Nurulkamal
Zamzuri, Zamira Hasanah
description This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria’s are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.
doi_str_mv 10.1063/1.4966829
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121543999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121543999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-58a85e43fe5c1f2a0fcf5919310f4f55acce65194e11f3bb861a891b573829043</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_AcBb0LXTPPR5iiLruKClxUEDyFtE8zSJjVpxf33dtkFb55mGB7e4XkRugayACLoHSyYFKLM5QmaAeeQFQLEKZoRIlmWM_p-ji5S2hKSy6IoZ-hj82lwH0OlK9e6YYcbl4boqnFwweMuNKbFwWLtIu5D2x7OzjfmB2vfYDck3ITOee2nzXn8MupW4_XY9WO8RGdWt8lcHeccvT0-bJZP2fp19by8X2d1LumQ8VKX3DBqDa_B5prY2nIJkgKxzHKu69oIDpIZAEurqhSgSwkVL-jkSRido5tD7uTxNZo0qG0Yo59eqhxy4IxKKSfq9kCl2g1676H66DoddwqI2penQB3L-w_-DvEPVH1j6S_elXAz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121543999</pqid></control><display><type>conference_proceeding</type><title>The probability distribution model of air pollution index and its dominants in Kuala Lumpur</title><source>AIP Journals Complete</source><creator>AL-Dhurafi, Nasr Ahmed ; Razali, Ahmad Mahir ; Masseran, Nurulkamal ; Zamzuri, Zamira Hasanah</creator><contributor>Badri, Khairiah Hj ; Yaacob, Wan Zuhairi Wan ; Ibrahim, Nazlina ; Noorani, Mohd Salmi Md ; Jumali, Mohammad Hafizuddin Hj ; Ibrahim, Kamarulzaman ; Rasol, Noor Hayati Ahmad</contributor><creatorcontrib>AL-Dhurafi, Nasr Ahmed ; Razali, Ahmad Mahir ; Masseran, Nurulkamal ; Zamzuri, Zamira Hasanah ; Badri, Khairiah Hj ; Yaacob, Wan Zuhairi Wan ; Ibrahim, Nazlina ; Noorani, Mohd Salmi Md ; Jumali, Mohammad Hafizuddin Hj ; Ibrahim, Kamarulzaman ; Rasol, Noor Hayati Ahmad</creatorcontrib><description>This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria’s are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4966829</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air pollution ; Carbon monoxide ; Goodness of fit ; Nitrogen dioxide ; Particulate emissions ; Pollutants ; Probability distribution functions ; Statistical analysis ; Statistical models ; Sulfur dioxide ; Weight</subject><ispartof>AIP Conference Proceedings, 2016, Vol.1784 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-58a85e43fe5c1f2a0fcf5919310f4f55acce65194e11f3bb861a891b573829043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4966829$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Badri, Khairiah Hj</contributor><contributor>Yaacob, Wan Zuhairi Wan</contributor><contributor>Ibrahim, Nazlina</contributor><contributor>Noorani, Mohd Salmi Md</contributor><contributor>Jumali, Mohammad Hafizuddin Hj</contributor><contributor>Ibrahim, Kamarulzaman</contributor><contributor>Rasol, Noor Hayati Ahmad</contributor><creatorcontrib>AL-Dhurafi, Nasr Ahmed</creatorcontrib><creatorcontrib>Razali, Ahmad Mahir</creatorcontrib><creatorcontrib>Masseran, Nurulkamal</creatorcontrib><creatorcontrib>Zamzuri, Zamira Hasanah</creatorcontrib><title>The probability distribution model of air pollution index and its dominants in Kuala Lumpur</title><title>AIP Conference Proceedings</title><description>This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria’s are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.</description><subject>Air pollution</subject><subject>Carbon monoxide</subject><subject>Goodness of fit</subject><subject>Nitrogen dioxide</subject><subject>Particulate emissions</subject><subject>Pollutants</subject><subject>Probability distribution functions</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Sulfur dioxide</subject><subject>Weight</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LxDAQhoMouK4e_AcBb0LXTPPR5iiLruKClxUEDyFtE8zSJjVpxf33dtkFb55mGB7e4XkRugayACLoHSyYFKLM5QmaAeeQFQLEKZoRIlmWM_p-ji5S2hKSy6IoZ-hj82lwH0OlK9e6YYcbl4boqnFwweMuNKbFwWLtIu5D2x7OzjfmB2vfYDck3ITOee2nzXn8MupW4_XY9WO8RGdWt8lcHeccvT0-bJZP2fp19by8X2d1LumQ8VKX3DBqDa_B5prY2nIJkgKxzHKu69oIDpIZAEurqhSgSwkVL-jkSRido5tD7uTxNZo0qG0Yo59eqhxy4IxKKSfq9kCl2g1676H66DoddwqI2penQB3L-w_-DvEPVH1j6S_elXAz</recordid><startdate>20161117</startdate><enddate>20161117</enddate><creator>AL-Dhurafi, Nasr Ahmed</creator><creator>Razali, Ahmad Mahir</creator><creator>Masseran, Nurulkamal</creator><creator>Zamzuri, Zamira Hasanah</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161117</creationdate><title>The probability distribution model of air pollution index and its dominants in Kuala Lumpur</title><author>AL-Dhurafi, Nasr Ahmed ; Razali, Ahmad Mahir ; Masseran, Nurulkamal ; Zamzuri, Zamira Hasanah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-58a85e43fe5c1f2a0fcf5919310f4f55acce65194e11f3bb861a891b573829043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Air pollution</topic><topic>Carbon monoxide</topic><topic>Goodness of fit</topic><topic>Nitrogen dioxide</topic><topic>Particulate emissions</topic><topic>Pollutants</topic><topic>Probability distribution functions</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Sulfur dioxide</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Dhurafi, Nasr Ahmed</creatorcontrib><creatorcontrib>Razali, Ahmad Mahir</creatorcontrib><creatorcontrib>Masseran, Nurulkamal</creatorcontrib><creatorcontrib>Zamzuri, Zamira Hasanah</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Dhurafi, Nasr Ahmed</au><au>Razali, Ahmad Mahir</au><au>Masseran, Nurulkamal</au><au>Zamzuri, Zamira Hasanah</au><au>Badri, Khairiah Hj</au><au>Yaacob, Wan Zuhairi Wan</au><au>Ibrahim, Nazlina</au><au>Noorani, Mohd Salmi Md</au><au>Jumali, Mohammad Hafizuddin Hj</au><au>Ibrahim, Kamarulzaman</au><au>Rasol, Noor Hayati Ahmad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The probability distribution model of air pollution index and its dominants in Kuala Lumpur</atitle><btitle>AIP Conference Proceedings</btitle><date>2016-11-17</date><risdate>2016</risdate><volume>1784</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria’s are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4966829</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2016, Vol.1784 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2121543999
source AIP Journals Complete
subjects Air pollution
Carbon monoxide
Goodness of fit
Nitrogen dioxide
Particulate emissions
Pollutants
Probability distribution functions
Statistical analysis
Statistical models
Sulfur dioxide
Weight
title The probability distribution model of air pollution index and its dominants in Kuala Lumpur
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20probability%20distribution%20model%20of%20air%20pollution%20index%20and%20its%20dominants%20in%20Kuala%20Lumpur&rft.btitle=AIP%20Conference%20Proceedings&rft.au=AL-Dhurafi,%20Nasr%20Ahmed&rft.date=2016-11-17&rft.volume=1784&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4966829&rft_dat=%3Cproquest_scita%3E2121543999%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121543999&rft_id=info:pmid/&rfr_iscdi=true