Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires
We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-11, Vol.109 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 109 |
creator | Selmo, S. Cecchini, R. Cecchi, S. Wiemer, C. Fanciulli, M. Rotunno, E. Lazzarini, L. Rigato, M. Pogany, D. Lugstein, A. Longo, M. |
description | We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices. |
doi_str_mv | 10.1063/1.4968510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121539821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121539821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</originalsourceid><addsrcrecordid>eNp90F9LwzAUBfAgCs7pg98g4JNCZ27Sps2jDP8MBj44n0Oa3mwdW1OTzrJvb2VDHwSfLgd-nAuHkGtgE2BS3MMkVbLIgJ2QEbA8TwRAcUpGjDGRSJXBObmIcT3EjAsxIrO572nrewy0XZmI1K5Ms0S6xa0Pexr7urOrullS7-hu0wWTdEOks0a8lbBAThvT-L4OGC_JmTObiFfHOybvT4-L6Usyf32eTR_miRWSd4mphJMOJXJkBaisTPMKyzwvhUSVpy5LGTMqc6aoVIEyR2ZdisIVCo3lgokxuTn0tsF_7DB2eu13oRleag4cMqEKDoO6PSgbfIwBnW5DvTVhr4Hp76U06ONSg7072GjrznS1b37wpw-_ULeV-w__bf4CeD12Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121539821</pqid></control><display><type>article</type><title>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Selmo, S. ; Cecchini, R. ; Cecchi, S. ; Wiemer, C. ; Fanciulli, M. ; Rotunno, E. ; Lazzarini, L. ; Rigato, M. ; Pogany, D. ; Lugstein, A. ; Longo, M.</creator><creatorcontrib>Selmo, S. ; Cecchini, R. ; Cecchi, S. ; Wiemer, C. ; Fanciulli, M. ; Rotunno, E. ; Lazzarini, L. ; Rigato, M. ; Pogany, D. ; Lugstein, A. ; Longo, M.</creatorcontrib><description>We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4968510</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphization ; Applied physics ; Computer memory ; Electrical properties ; Gold ; High resistance ; Low resistance ; Memory devices ; Metalorganic chemical vapor deposition ; Nanoparticles ; Nanowires ; Organic chemicals ; Organic chemistry ; Phase change ; Phase transitions ; Self-assembly ; Switching</subject><ispartof>Applied physics letters, 2016-11, Vol.109 (21)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</citedby><cites>FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</cites><orcidid>0000-0002-9263-4021 ; 0000-0002-6364-8184 ; 0000-0003-3650-2478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4968510$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Selmo, S.</creatorcontrib><creatorcontrib>Cecchini, R.</creatorcontrib><creatorcontrib>Cecchi, S.</creatorcontrib><creatorcontrib>Wiemer, C.</creatorcontrib><creatorcontrib>Fanciulli, M.</creatorcontrib><creatorcontrib>Rotunno, E.</creatorcontrib><creatorcontrib>Lazzarini, L.</creatorcontrib><creatorcontrib>Rigato, M.</creatorcontrib><creatorcontrib>Pogany, D.</creatorcontrib><creatorcontrib>Lugstein, A.</creatorcontrib><creatorcontrib>Longo, M.</creatorcontrib><title>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</title><title>Applied physics letters</title><description>We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.</description><subject>Amorphization</subject><subject>Applied physics</subject><subject>Computer memory</subject><subject>Electrical properties</subject><subject>Gold</subject><subject>High resistance</subject><subject>Low resistance</subject><subject>Memory devices</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Nanoparticles</subject><subject>Nanowires</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Phase change</subject><subject>Phase transitions</subject><subject>Self-assembly</subject><subject>Switching</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90F9LwzAUBfAgCs7pg98g4JNCZ27Sps2jDP8MBj44n0Oa3mwdW1OTzrJvb2VDHwSfLgd-nAuHkGtgE2BS3MMkVbLIgJ2QEbA8TwRAcUpGjDGRSJXBObmIcT3EjAsxIrO572nrewy0XZmI1K5Ms0S6xa0Pexr7urOrullS7-hu0wWTdEOks0a8lbBAThvT-L4OGC_JmTObiFfHOybvT4-L6Usyf32eTR_miRWSd4mphJMOJXJkBaisTPMKyzwvhUSVpy5LGTMqc6aoVIEyR2ZdisIVCo3lgokxuTn0tsF_7DB2eu13oRleag4cMqEKDoO6PSgbfIwBnW5DvTVhr4Hp76U06ONSg7072GjrznS1b37wpw-_ULeV-w__bf4CeD12Xw</recordid><startdate>20161121</startdate><enddate>20161121</enddate><creator>Selmo, S.</creator><creator>Cecchini, R.</creator><creator>Cecchi, S.</creator><creator>Wiemer, C.</creator><creator>Fanciulli, M.</creator><creator>Rotunno, E.</creator><creator>Lazzarini, L.</creator><creator>Rigato, M.</creator><creator>Pogany, D.</creator><creator>Lugstein, A.</creator><creator>Longo, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9263-4021</orcidid><orcidid>https://orcid.org/0000-0002-6364-8184</orcidid><orcidid>https://orcid.org/0000-0003-3650-2478</orcidid></search><sort><creationdate>20161121</creationdate><title>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</title><author>Selmo, S. ; Cecchini, R. ; Cecchi, S. ; Wiemer, C. ; Fanciulli, M. ; Rotunno, E. ; Lazzarini, L. ; Rigato, M. ; Pogany, D. ; Lugstein, A. ; Longo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amorphization</topic><topic>Applied physics</topic><topic>Computer memory</topic><topic>Electrical properties</topic><topic>Gold</topic><topic>High resistance</topic><topic>Low resistance</topic><topic>Memory devices</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Nanoparticles</topic><topic>Nanowires</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Phase change</topic><topic>Phase transitions</topic><topic>Self-assembly</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selmo, S.</creatorcontrib><creatorcontrib>Cecchini, R.</creatorcontrib><creatorcontrib>Cecchi, S.</creatorcontrib><creatorcontrib>Wiemer, C.</creatorcontrib><creatorcontrib>Fanciulli, M.</creatorcontrib><creatorcontrib>Rotunno, E.</creatorcontrib><creatorcontrib>Lazzarini, L.</creatorcontrib><creatorcontrib>Rigato, M.</creatorcontrib><creatorcontrib>Pogany, D.</creatorcontrib><creatorcontrib>Lugstein, A.</creatorcontrib><creatorcontrib>Longo, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selmo, S.</au><au>Cecchini, R.</au><au>Cecchi, S.</au><au>Wiemer, C.</au><au>Fanciulli, M.</au><au>Rotunno, E.</au><au>Lazzarini, L.</au><au>Rigato, M.</au><au>Pogany, D.</au><au>Lugstein, A.</au><au>Longo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2016-11-21</date><risdate>2016</risdate><volume>109</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4968510</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9263-4021</orcidid><orcidid>https://orcid.org/0000-0002-6364-8184</orcidid><orcidid>https://orcid.org/0000-0003-3650-2478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-11, Vol.109 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2121539821 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Amorphization Applied physics Computer memory Electrical properties Gold High resistance Low resistance Memory devices Metalorganic chemical vapor deposition Nanoparticles Nanowires Organic chemicals Organic chemistry Phase change Phase transitions Self-assembly Switching |
title | Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20power%20phase%20change%20memory%20switching%20of%20ultra-thin%20In3Sb1Te2%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Selmo,%20S.&rft.date=2016-11-21&rft.volume=109&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4968510&rft_dat=%3Cproquest_cross%3E2121539821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121539821&rft_id=info:pmid/&rfr_iscdi=true |