Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires

We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-11, Vol.109 (21)
Hauptverfasser: Selmo, S., Cecchini, R., Cecchi, S., Wiemer, C., Fanciulli, M., Rotunno, E., Lazzarini, L., Rigato, M., Pogany, D., Lugstein, A., Longo, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 109
creator Selmo, S.
Cecchini, R.
Cecchi, S.
Wiemer, C.
Fanciulli, M.
Rotunno, E.
Lazzarini, L.
Rigato, M.
Pogany, D.
Lugstein, A.
Longo, M.
description We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.
doi_str_mv 10.1063/1.4968510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121539821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121539821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</originalsourceid><addsrcrecordid>eNp90F9LwzAUBfAgCs7pg98g4JNCZ27Sps2jDP8MBj44n0Oa3mwdW1OTzrJvb2VDHwSfLgd-nAuHkGtgE2BS3MMkVbLIgJ2QEbA8TwRAcUpGjDGRSJXBObmIcT3EjAsxIrO572nrewy0XZmI1K5Ms0S6xa0Pexr7urOrullS7-hu0wWTdEOks0a8lbBAThvT-L4OGC_JmTObiFfHOybvT4-L6Usyf32eTR_miRWSd4mphJMOJXJkBaisTPMKyzwvhUSVpy5LGTMqc6aoVIEyR2ZdisIVCo3lgokxuTn0tsF_7DB2eu13oRleag4cMqEKDoO6PSgbfIwBnW5DvTVhr4Hp76U06ONSg7072GjrznS1b37wpw-_ULeV-w__bf4CeD12Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121539821</pqid></control><display><type>article</type><title>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Selmo, S. ; Cecchini, R. ; Cecchi, S. ; Wiemer, C. ; Fanciulli, M. ; Rotunno, E. ; Lazzarini, L. ; Rigato, M. ; Pogany, D. ; Lugstein, A. ; Longo, M.</creator><creatorcontrib>Selmo, S. ; Cecchini, R. ; Cecchi, S. ; Wiemer, C. ; Fanciulli, M. ; Rotunno, E. ; Lazzarini, L. ; Rigato, M. ; Pogany, D. ; Lugstein, A. ; Longo, M.</creatorcontrib><description>We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4968510</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphization ; Applied physics ; Computer memory ; Electrical properties ; Gold ; High resistance ; Low resistance ; Memory devices ; Metalorganic chemical vapor deposition ; Nanoparticles ; Nanowires ; Organic chemicals ; Organic chemistry ; Phase change ; Phase transitions ; Self-assembly ; Switching</subject><ispartof>Applied physics letters, 2016-11, Vol.109 (21)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</citedby><cites>FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</cites><orcidid>0000-0002-9263-4021 ; 0000-0002-6364-8184 ; 0000-0003-3650-2478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4968510$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Selmo, S.</creatorcontrib><creatorcontrib>Cecchini, R.</creatorcontrib><creatorcontrib>Cecchi, S.</creatorcontrib><creatorcontrib>Wiemer, C.</creatorcontrib><creatorcontrib>Fanciulli, M.</creatorcontrib><creatorcontrib>Rotunno, E.</creatorcontrib><creatorcontrib>Lazzarini, L.</creatorcontrib><creatorcontrib>Rigato, M.</creatorcontrib><creatorcontrib>Pogany, D.</creatorcontrib><creatorcontrib>Lugstein, A.</creatorcontrib><creatorcontrib>Longo, M.</creatorcontrib><title>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</title><title>Applied physics letters</title><description>We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.</description><subject>Amorphization</subject><subject>Applied physics</subject><subject>Computer memory</subject><subject>Electrical properties</subject><subject>Gold</subject><subject>High resistance</subject><subject>Low resistance</subject><subject>Memory devices</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Nanoparticles</subject><subject>Nanowires</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Phase change</subject><subject>Phase transitions</subject><subject>Self-assembly</subject><subject>Switching</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90F9LwzAUBfAgCs7pg98g4JNCZ27Sps2jDP8MBj44n0Oa3mwdW1OTzrJvb2VDHwSfLgd-nAuHkGtgE2BS3MMkVbLIgJ2QEbA8TwRAcUpGjDGRSJXBObmIcT3EjAsxIrO572nrewy0XZmI1K5Ms0S6xa0Pexr7urOrullS7-hu0wWTdEOks0a8lbBAThvT-L4OGC_JmTObiFfHOybvT4-L6Usyf32eTR_miRWSd4mphJMOJXJkBaisTPMKyzwvhUSVpy5LGTMqc6aoVIEyR2ZdisIVCo3lgokxuTn0tsF_7DB2eu13oRleag4cMqEKDoO6PSgbfIwBnW5DvTVhr4Hp76U06ONSg7072GjrznS1b37wpw-_ULeV-w__bf4CeD12Xw</recordid><startdate>20161121</startdate><enddate>20161121</enddate><creator>Selmo, S.</creator><creator>Cecchini, R.</creator><creator>Cecchi, S.</creator><creator>Wiemer, C.</creator><creator>Fanciulli, M.</creator><creator>Rotunno, E.</creator><creator>Lazzarini, L.</creator><creator>Rigato, M.</creator><creator>Pogany, D.</creator><creator>Lugstein, A.</creator><creator>Longo, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9263-4021</orcidid><orcidid>https://orcid.org/0000-0002-6364-8184</orcidid><orcidid>https://orcid.org/0000-0003-3650-2478</orcidid></search><sort><creationdate>20161121</creationdate><title>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</title><author>Selmo, S. ; Cecchini, R. ; Cecchi, S. ; Wiemer, C. ; Fanciulli, M. ; Rotunno, E. ; Lazzarini, L. ; Rigato, M. ; Pogany, D. ; Lugstein, A. ; Longo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ad3f6fe6e2e08195b47deb77b36e974f5400a95fa8d98e67e0cf4e3f89eac2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amorphization</topic><topic>Applied physics</topic><topic>Computer memory</topic><topic>Electrical properties</topic><topic>Gold</topic><topic>High resistance</topic><topic>Low resistance</topic><topic>Memory devices</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Nanoparticles</topic><topic>Nanowires</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Phase change</topic><topic>Phase transitions</topic><topic>Self-assembly</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selmo, S.</creatorcontrib><creatorcontrib>Cecchini, R.</creatorcontrib><creatorcontrib>Cecchi, S.</creatorcontrib><creatorcontrib>Wiemer, C.</creatorcontrib><creatorcontrib>Fanciulli, M.</creatorcontrib><creatorcontrib>Rotunno, E.</creatorcontrib><creatorcontrib>Lazzarini, L.</creatorcontrib><creatorcontrib>Rigato, M.</creatorcontrib><creatorcontrib>Pogany, D.</creatorcontrib><creatorcontrib>Lugstein, A.</creatorcontrib><creatorcontrib>Longo, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selmo, S.</au><au>Cecchini, R.</au><au>Cecchi, S.</au><au>Wiemer, C.</au><au>Fanciulli, M.</au><au>Rotunno, E.</au><au>Lazzarini, L.</au><au>Rigato, M.</au><au>Pogany, D.</au><au>Lugstein, A.</au><au>Longo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2016-11-21</date><risdate>2016</risdate><volume>109</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4968510</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9263-4021</orcidid><orcidid>https://orcid.org/0000-0002-6364-8184</orcidid><orcidid>https://orcid.org/0000-0003-3650-2478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-11, Vol.109 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2121539821
source AIP Journals Complete; Alma/SFX Local Collection
subjects Amorphization
Applied physics
Computer memory
Electrical properties
Gold
High resistance
Low resistance
Memory devices
Metalorganic chemical vapor deposition
Nanoparticles
Nanowires
Organic chemicals
Organic chemistry
Phase change
Phase transitions
Self-assembly
Switching
title Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20power%20phase%20change%20memory%20switching%20of%20ultra-thin%20In3Sb1Te2%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Selmo,%20S.&rft.date=2016-11-21&rft.volume=109&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4968510&rft_dat=%3Cproquest_cross%3E2121539821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121539821&rft_id=info:pmid/&rfr_iscdi=true