S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities
We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to in...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-12, Vol.120 (22) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 120 |
creator | Suryavanshi, Saurabh V. Pop, Eric |
description | We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to intrinsic FET behavior, the model includes contact resistance, traps and impurities, quantum capacitance, fringing fields, high-field velocity saturation, and self-heating, the latter being found to play an important role. The model is calibrated with state-of-the-art experimental data for n- and p-type 2D-FETs, and it can be used to analyze device properties for sub-100 nm gate lengths. Using the experimental fit, we demonstrate the feasibility of circuit simulations using properly scaled devices. The complete model is implemented in SPICE-compatible Verilog-A, and a downloadable version is freely available at the nanoHUB.org. |
doi_str_mv | 10.1063/1.4971404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121529090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121529090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-74abff1ad599bab9446141d0a6450424d5ecb533860d0788b67646212367ec3c3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7phf8g4JVCZtKkSeOdzE8YKEyvS5qkmtE2M0kn89db3dALwasDh-e8HF4AjgmeEMzpOZkwKQjDbAeMCC4kEnmOd8EI44ygQgq5Dw5iXGBMSEHlCHzMs6v5BXx8XUenI6pUtAZq3y6VTrD1xjaw9gFqF3TvEoyu7RuVnO-gr2F698i41nZxWKgGRts67TvT6zTcGLty2kboOt30xnUvsPMdcsaqxiVn4yHYq1UT7dF2jsHzzfXT9A7NHm7vp5czpGkmEhJMVXVNlMmlrFQlGeOEEYMVZzlmGTO51VVOacGxwaIoKi444xnJKBdWU03H4GSTuwz-rbcxlQvfh-HfWA6K5JnEEg_qdKN08DEGW5fL4FoV1iXB5Ve1JSm31Q72bGOjdum7jR-88uEXlktT_4f_Jn8CTumIVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121529090</pqid></control><display><type>article</type><title>S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Suryavanshi, Saurabh V. ; Pop, Eric</creator><creatorcontrib>Suryavanshi, Saurabh V. ; Pop, Eric</creatorcontrib><description>We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to intrinsic FET behavior, the model includes contact resistance, traps and impurities, quantum capacitance, fringing fields, high-field velocity saturation, and self-heating, the latter being found to play an important role. The model is calibrated with state-of-the-art experimental data for n- and p-type 2D-FETs, and it can be used to analyze device properties for sub-100 nm gate lengths. Using the experimental fit, we demonstrate the feasibility of circuit simulations using properly scaled devices. The complete model is implemented in SPICE-compatible Verilog-A, and a downloadable version is freely available at the nanoHUB.org.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4971404</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer simulation ; Contact resistance ; Field effect transistors ; Mathematical analysis ; Molybdenum disulfide ; Semiconductor devices ; Two dimensional analysis ; Two dimensional models</subject><ispartof>Journal of applied physics, 2016-12, Vol.120 (22)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-74abff1ad599bab9446141d0a6450424d5ecb533860d0788b67646212367ec3c3</citedby><cites>FETCH-LOGICAL-c327t-74abff1ad599bab9446141d0a6450424d5ecb533860d0788b67646212367ec3c3</cites><orcidid>0000-0003-0436-8534 ; 0000-0003-3181-1239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4971404$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Suryavanshi, Saurabh V.</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><title>S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities</title><title>Journal of applied physics</title><description>We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to intrinsic FET behavior, the model includes contact resistance, traps and impurities, quantum capacitance, fringing fields, high-field velocity saturation, and self-heating, the latter being found to play an important role. The model is calibrated with state-of-the-art experimental data for n- and p-type 2D-FETs, and it can be used to analyze device properties for sub-100 nm gate lengths. Using the experimental fit, we demonstrate the feasibility of circuit simulations using properly scaled devices. The complete model is implemented in SPICE-compatible Verilog-A, and a downloadable version is freely available at the nanoHUB.org.</description><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Contact resistance</subject><subject>Field effect transistors</subject><subject>Mathematical analysis</subject><subject>Molybdenum disulfide</subject><subject>Semiconductor devices</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgCs7phf8g4JVCZtKkSeOdzE8YKEyvS5qkmtE2M0kn89db3dALwasDh-e8HF4AjgmeEMzpOZkwKQjDbAeMCC4kEnmOd8EI44ygQgq5Dw5iXGBMSEHlCHzMs6v5BXx8XUenI6pUtAZq3y6VTrD1xjaw9gFqF3TvEoyu7RuVnO-gr2F698i41nZxWKgGRts67TvT6zTcGLty2kboOt30xnUvsPMdcsaqxiVn4yHYq1UT7dF2jsHzzfXT9A7NHm7vp5czpGkmEhJMVXVNlMmlrFQlGeOEEYMVZzlmGTO51VVOacGxwaIoKi444xnJKBdWU03H4GSTuwz-rbcxlQvfh-HfWA6K5JnEEg_qdKN08DEGW5fL4FoV1iXB5Ve1JSm31Q72bGOjdum7jR-88uEXlktT_4f_Jn8CTumIVw</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Suryavanshi, Saurabh V.</creator><creator>Pop, Eric</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0436-8534</orcidid><orcidid>https://orcid.org/0000-0003-3181-1239</orcidid></search><sort><creationdate>20161214</creationdate><title>S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities</title><author>Suryavanshi, Saurabh V. ; Pop, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-74abff1ad599bab9446141d0a6450424d5ecb533860d0788b67646212367ec3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Contact resistance</topic><topic>Field effect transistors</topic><topic>Mathematical analysis</topic><topic>Molybdenum disulfide</topic><topic>Semiconductor devices</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suryavanshi, Saurabh V.</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suryavanshi, Saurabh V.</au><au>Pop, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities</atitle><jtitle>Journal of applied physics</jtitle><date>2016-12-14</date><risdate>2016</risdate><volume>120</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to intrinsic FET behavior, the model includes contact resistance, traps and impurities, quantum capacitance, fringing fields, high-field velocity saturation, and self-heating, the latter being found to play an important role. The model is calibrated with state-of-the-art experimental data for n- and p-type 2D-FETs, and it can be used to analyze device properties for sub-100 nm gate lengths. Using the experimental fit, we demonstrate the feasibility of circuit simulations using properly scaled devices. The complete model is implemented in SPICE-compatible Verilog-A, and a downloadable version is freely available at the nanoHUB.org.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4971404</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0436-8534</orcidid><orcidid>https://orcid.org/0000-0003-3181-1239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-12, Vol.120 (22) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2121529090 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Applied physics Computer simulation Contact resistance Field effect transistors Mathematical analysis Molybdenum disulfide Semiconductor devices Two dimensional analysis Two dimensional models |
title | S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S2DS:%20Physics-based%20compact%20model%20for%20circuit%20simulation%20of%20two-dimensional%20semiconductor%20devices%20including%20non-idealities&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Suryavanshi,%20Saurabh%20V.&rft.date=2016-12-14&rft.volume=120&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4971404&rft_dat=%3Cproquest_scita%3E2121529090%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121529090&rft_id=info:pmid/&rfr_iscdi=true |