Selective growth of fully relaxed GeSn nano-islands by nanoheteroepitaxy on patterned Si(001)

In this letter, we explore in detail the potential of nanoheteroepitaxy to controllably fabricate high quality GeSn nano-structures and to further improve the crystallinity of GeSn alloys directly grown on Si(001). The GeSn was grown by molecular beam epitaxy at relatively high temperatures up to 75...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-11, Vol.109 (20)
Hauptverfasser: Schlykow, V., Klesse, W. M., Niu, G., Taoka, N., Yamamoto, Y., Skibitzki, O., Barget, M. R., Zaumseil, P., von Känel, H., Schubert, M. A., Capellini, G., Schroeder, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we explore in detail the potential of nanoheteroepitaxy to controllably fabricate high quality GeSn nano-structures and to further improve the crystallinity of GeSn alloys directly grown on Si(001). The GeSn was grown by molecular beam epitaxy at relatively high temperatures up to 750 °C on pre-patterned Si nano-pillars embedded in a SiO2 matrix. The best compromise between selective GeSn growth and homogenous Sn incorporation of 1.4% was achieved at a growth temperature of 600 °C. X-ray diffraction measurements confirmed that our growth approach results in both fully relaxed GeSn nano-islands and negligible Si interdiffusion into the core of the nanostructures. Detailed transmission electron microscopy characterizations show that only the small GeSn/Si interface area reveals defects, such as stacking faults. Importantly, the main part of the GeSn islands is defect-free and of high crystalline quality. The latter was further demonstrated by photoluminescence measurements where a clear redshift of the direct ΓC-ΓV transition was observed with increasing Sn content.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4967500