Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability

An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2016-12, Vol.26 (12), p.123110-123110
Hauptverfasser: Wen, Xiao-Yong, Yan, Zhenya, Malomed, Boris A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123110
container_issue 12
container_start_page 123110
container_title Chaos (Woodbury, N.Y.)
container_volume 26
creator Wen, Xiao-Yong
Yan, Zhenya
Malomed, Boris A.
description An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.
doi_str_mv 10.1063/1.4972111
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121528765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121528765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</originalsourceid><addsrcrecordid>eNp90UtrVDEUB_Agin3owi8gATcq3JqT5L7cldJaYcCNrkNuctKm3rmZ5jG1fnrvdKYtWOgqD378c3IOIe-AHQFrxBc4kn3LAeAF2QfW9VXbdPzlZl_LCmrG9shBSleMMeCifk32eMdE3zf1Pinn_uISYxWixUjXaHKI1PpkImakMVwUrG70GmnKOmOifqL5EqkJZTWipcfDGG58_lsttPW_KV4XnX2Y0ld6-kebTFMYy90F1ZPdZAx-9Pn2DXnl9Jjw7W49JL_OTn-enFeLH9--nxwvKiNln6umHRzrWTtXa2oN1nTaymHgyLREwQ0w7rRphBt6N4CWrXRiPhphbO9sr8Uh-bjNXcVwXTBltZy_huOoJwwlKehq2TEuQMz0w3_0KpQ4zdUpDhxq3rVNPatPW2ViSCmiU6volzreKmBqMwsFajeL2b7fJZZhifZB3jd_Bp-3IBmf7_r2YNYhPiaplXXP4adP_wNVUaFt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121528765</pqid></control><display><type>article</type><title>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wen, Xiao-Yong ; Yan, Zhenya ; Malomed, Boris A.</creator><creatorcontrib>Wen, Xiao-Yong ; Yan, Zhenya ; Malomed, Boris A.</creatorcontrib><description>An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4972111</identifier><identifier>PMID: 28039965</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Continuous radiation ; Mathematical analysis ; Nonlinear equations ; Stability</subject><ispartof>Chaos (Woodbury, N.Y.), 2016-12, Vol.26 (12), p.123110-123110</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</citedby><cites>FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</cites><orcidid>0000-0003-1657-9064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28039965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Malomed, Boris A.</creatorcontrib><title>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.</description><subject>Continuous radiation</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Stability</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90UtrVDEUB_Agin3owi8gATcq3JqT5L7cldJaYcCNrkNuctKm3rmZ5jG1fnrvdKYtWOgqD378c3IOIe-AHQFrxBc4kn3LAeAF2QfW9VXbdPzlZl_LCmrG9shBSleMMeCifk32eMdE3zf1Pinn_uISYxWixUjXaHKI1PpkImakMVwUrG70GmnKOmOifqL5EqkJZTWipcfDGG58_lsttPW_KV4XnX2Y0ld6-kebTFMYy90F1ZPdZAx-9Pn2DXnl9Jjw7W49JL_OTn-enFeLH9--nxwvKiNln6umHRzrWTtXa2oN1nTaymHgyLREwQ0w7rRphBt6N4CWrXRiPhphbO9sr8Uh-bjNXcVwXTBltZy_huOoJwwlKehq2TEuQMz0w3_0KpQ4zdUpDhxq3rVNPatPW2ViSCmiU6volzreKmBqMwsFajeL2b7fJZZhifZB3jd_Bp-3IBmf7_r2YNYhPiaplXXP4adP_wNVUaFt</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Wen, Xiao-Yong</creator><creator>Yan, Zhenya</creator><creator>Malomed, Boris A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></search><sort><creationdate>201612</creationdate><title>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</title><author>Wen, Xiao-Yong ; Yan, Zhenya ; Malomed, Boris A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Continuous radiation</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Malomed, Boris A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Xiao-Yong</au><au>Yan, Zhenya</au><au>Malomed, Boris A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2016-12</date><risdate>2016</risdate><volume>26</volume><issue>12</issue><spage>123110</spage><epage>123110</epage><pages>123110-123110</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28039965</pmid><doi>10.1063/1.4972111</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2016-12, Vol.26 (12), p.123110-123110
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_journals_2121528765
source AIP Journals Complete; Alma/SFX Local Collection
subjects Continuous radiation
Mathematical analysis
Nonlinear equations
Stability
title Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-order%20vector%20discrete%20rogue-wave%20states%20in%20the%20coupled%20Ablowitz-Ladik%20equations:%20Exact%20solutions%20and%20stability&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wen,%20Xiao-Yong&rft.date=2016-12&rft.volume=26&rft.issue=12&rft.spage=123110&rft.epage=123110&rft.pages=123110-123110&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4972111&rft_dat=%3Cproquest_scita%3E2121528765%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121528765&rft_id=info:pmid/28039965&rfr_iscdi=true