Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability
An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the sys...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2016-12, Vol.26 (12), p.123110-123110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123110 |
---|---|
container_issue | 12 |
container_start_page | 123110 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 26 |
creator | Wen, Xiao-Yong Yan, Zhenya Malomed, Boris A. |
description | An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions. |
doi_str_mv | 10.1063/1.4972111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2121528765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121528765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</originalsourceid><addsrcrecordid>eNp90UtrVDEUB_Agin3owi8gATcq3JqT5L7cldJaYcCNrkNuctKm3rmZ5jG1fnrvdKYtWOgqD378c3IOIe-AHQFrxBc4kn3LAeAF2QfW9VXbdPzlZl_LCmrG9shBSleMMeCifk32eMdE3zf1Pinn_uISYxWixUjXaHKI1PpkImakMVwUrG70GmnKOmOifqL5EqkJZTWipcfDGG58_lsttPW_KV4XnX2Y0ld6-kebTFMYy90F1ZPdZAx-9Pn2DXnl9Jjw7W49JL_OTn-enFeLH9--nxwvKiNln6umHRzrWTtXa2oN1nTaymHgyLREwQ0w7rRphBt6N4CWrXRiPhphbO9sr8Uh-bjNXcVwXTBltZy_huOoJwwlKehq2TEuQMz0w3_0KpQ4zdUpDhxq3rVNPatPW2ViSCmiU6volzreKmBqMwsFajeL2b7fJZZhifZB3jd_Bp-3IBmf7_r2YNYhPiaplXXP4adP_wNVUaFt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121528765</pqid></control><display><type>article</type><title>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wen, Xiao-Yong ; Yan, Zhenya ; Malomed, Boris A.</creator><creatorcontrib>Wen, Xiao-Yong ; Yan, Zhenya ; Malomed, Boris A.</creatorcontrib><description>An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4972111</identifier><identifier>PMID: 28039965</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Continuous radiation ; Mathematical analysis ; Nonlinear equations ; Stability</subject><ispartof>Chaos (Woodbury, N.Y.), 2016-12, Vol.26 (12), p.123110-123110</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</citedby><cites>FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</cites><orcidid>0000-0003-1657-9064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28039965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Malomed, Boris A.</creatorcontrib><title>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.</description><subject>Continuous radiation</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Stability</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90UtrVDEUB_Agin3owi8gATcq3JqT5L7cldJaYcCNrkNuctKm3rmZ5jG1fnrvdKYtWOgqD378c3IOIe-AHQFrxBc4kn3LAeAF2QfW9VXbdPzlZl_LCmrG9shBSleMMeCifk32eMdE3zf1Pinn_uISYxWixUjXaHKI1PpkImakMVwUrG70GmnKOmOifqL5EqkJZTWipcfDGG58_lsttPW_KV4XnX2Y0ld6-kebTFMYy90F1ZPdZAx-9Pn2DXnl9Jjw7W49JL_OTn-enFeLH9--nxwvKiNln6umHRzrWTtXa2oN1nTaymHgyLREwQ0w7rRphBt6N4CWrXRiPhphbO9sr8Uh-bjNXcVwXTBltZy_huOoJwwlKehq2TEuQMz0w3_0KpQ4zdUpDhxq3rVNPatPW2ViSCmiU6volzreKmBqMwsFajeL2b7fJZZhifZB3jd_Bp-3IBmf7_r2YNYhPiaplXXP4adP_wNVUaFt</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Wen, Xiao-Yong</creator><creator>Yan, Zhenya</creator><creator>Malomed, Boris A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></search><sort><creationdate>201612</creationdate><title>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</title><author>Wen, Xiao-Yong ; Yan, Zhenya ; Malomed, Boris A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-67bf0907803c5a1dc8ad4bb2e0a4e32c102fac63fb9fb1a474f3c63c3cd9fd9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Continuous radiation</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Malomed, Boris A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Xiao-Yong</au><au>Yan, Zhenya</au><au>Malomed, Boris A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2016-12</date><risdate>2016</risdate><volume>26</volume><issue>12</issue><spage>123110</spage><epage>123110</epage><pages>123110-123110</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28039965</pmid><doi>10.1063/1.4972111</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2016-12, Vol.26 (12), p.123110-123110 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_journals_2121528765 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Continuous radiation Mathematical analysis Nonlinear equations Stability |
title | Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-order%20vector%20discrete%20rogue-wave%20states%20in%20the%20coupled%20Ablowitz-Ladik%20equations:%20Exact%20solutions%20and%20stability&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wen,%20Xiao-Yong&rft.date=2016-12&rft.volume=26&rft.issue=12&rft.spage=123110&rft.epage=123110&rft.pages=123110-123110&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4972111&rft_dat=%3Cproquest_scita%3E2121528765%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121528765&rft_id=info:pmid/28039965&rfr_iscdi=true |