Modeling of Microfabricated Microneedles for Minimally Invasive Drug Delivery, Sampling and Analysis

We compare simulation to analysis and experiments for flows in three microneedle geometries--straight, bent and filtered. The bent microneedle was found to have the highest fluid carrying capacity of 0.082 ml/sec at 138 kPa with a Reynolds number of 738. A microneedle with a built in microfilter had...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2003-09, Vol.5 (3), p.245
Hauptverfasser: Trebotich, D, Zahn, J D, Prabhakarpandian, B, Liepmann, D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 245
container_title Biomedical microdevices
container_volume 5
creator Trebotich, D
Zahn, J D
Prabhakarpandian, B
Liepmann, D
description We compare simulation to analysis and experiments for flows in three microneedle geometries--straight, bent and filtered. The bent microneedle was found to have the highest fluid carrying capacity of 0.082 ml/sec at 138 kPa with a Reynolds number of 738. A microneedle with a built in microfilter had a flow rate of 0.07 ml/sec. Although the throughput of these microneedles is low they compare favorably with other microneedle designs. Laminar flow models were found to accurately predict the flow behavior through the microneedles. All computational modeling was performed with the CFDRC CFD-ACE + suite of software tools.
doi_str_mv 10.1023/A:1025716427229
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_212142366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>417582811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-3708f675dc43f180c98454ebb93dc5670a43a6549cad24926969de3727475ac73</originalsourceid><addsrcrecordid>eNotjkFPAjEUhBujiYievTaeXW1f2_e23gigkkA8qGdS2i5ZsuxiCyT8ezfi6ZuZw5dh7F6KJylAPY9eehiSqIEA7AUbSENQlFTKyz6rkgqQhNfsJueNENIi4oCFRRdiU7dr3lV8UfvUVW6Vau_2MZx7G2NoYuZVl_qhrbeuaU581h5dro-RT9JhzSe94hjT6ZF_uu3uT-fawEeta065zrfsqnJNjnf_HLLv1-nX-L2Yf7zNxqN54QFwXygSZYVkgteqkqXwttRGx9XKquANknBaOTTaehdAW0CLNkRFQJqM86SG7OHs3aXu5xDzfrnpDqk_kZcgQWpQiOoXfGZXJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212142366</pqid></control><display><type>article</type><title>Modeling of Microfabricated Microneedles for Minimally Invasive Drug Delivery, Sampling and Analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Trebotich, D ; Zahn, J D ; Prabhakarpandian, B ; Liepmann, D</creator><creatorcontrib>Trebotich, D ; Zahn, J D ; Prabhakarpandian, B ; Liepmann, D</creatorcontrib><description>We compare simulation to analysis and experiments for flows in three microneedle geometries--straight, bent and filtered. The bent microneedle was found to have the highest fluid carrying capacity of 0.082 ml/sec at 138 kPa with a Reynolds number of 738. A microneedle with a built in microfilter had a flow rate of 0.07 ml/sec. Although the throughput of these microneedles is low they compare favorably with other microneedle designs. Laminar flow models were found to accurately predict the flow behavior through the microneedles. All computational modeling was performed with the CFDRC CFD-ACE + suite of software tools.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1023/A:1025716427229</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><ispartof>Biomedical microdevices, 2003-09, Vol.5 (3), p.245</ispartof><rights>Copyright (c) 2003 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-3708f675dc43f180c98454ebb93dc5670a43a6549cad24926969de3727475ac73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Trebotich, D</creatorcontrib><creatorcontrib>Zahn, J D</creatorcontrib><creatorcontrib>Prabhakarpandian, B</creatorcontrib><creatorcontrib>Liepmann, D</creatorcontrib><title>Modeling of Microfabricated Microneedles for Minimally Invasive Drug Delivery, Sampling and Analysis</title><title>Biomedical microdevices</title><description>We compare simulation to analysis and experiments for flows in three microneedle geometries--straight, bent and filtered. The bent microneedle was found to have the highest fluid carrying capacity of 0.082 ml/sec at 138 kPa with a Reynolds number of 738. A microneedle with a built in microfilter had a flow rate of 0.07 ml/sec. Although the throughput of these microneedles is low they compare favorably with other microneedle designs. Laminar flow models were found to accurately predict the flow behavior through the microneedles. All computational modeling was performed with the CFDRC CFD-ACE + suite of software tools.</description><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotjkFPAjEUhBujiYievTaeXW1f2_e23gigkkA8qGdS2i5ZsuxiCyT8ezfi6ZuZw5dh7F6KJylAPY9eehiSqIEA7AUbSENQlFTKyz6rkgqQhNfsJueNENIi4oCFRRdiU7dr3lV8UfvUVW6Vau_2MZx7G2NoYuZVl_qhrbeuaU581h5dro-RT9JhzSe94hjT6ZF_uu3uT-fawEeta065zrfsqnJNjnf_HLLv1-nX-L2Yf7zNxqN54QFwXygSZYVkgteqkqXwttRGx9XKquANknBaOTTaehdAW0CLNkRFQJqM86SG7OHs3aXu5xDzfrnpDqk_kZcgQWpQiOoXfGZXJg</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Trebotich, D</creator><creator>Zahn, J D</creator><creator>Prabhakarpandian, B</creator><creator>Liepmann, D</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030901</creationdate><title>Modeling of Microfabricated Microneedles for Minimally Invasive Drug Delivery, Sampling and Analysis</title><author>Trebotich, D ; Zahn, J D ; Prabhakarpandian, B ; Liepmann, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-3708f675dc43f180c98454ebb93dc5670a43a6549cad24926969de3727475ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trebotich, D</creatorcontrib><creatorcontrib>Zahn, J D</creatorcontrib><creatorcontrib>Prabhakarpandian, B</creatorcontrib><creatorcontrib>Liepmann, D</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trebotich, D</au><au>Zahn, J D</au><au>Prabhakarpandian, B</au><au>Liepmann, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Microfabricated Microneedles for Minimally Invasive Drug Delivery, Sampling and Analysis</atitle><jtitle>Biomedical microdevices</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>5</volume><issue>3</issue><spage>245</spage><pages>245-</pages><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>We compare simulation to analysis and experiments for flows in three microneedle geometries--straight, bent and filtered. The bent microneedle was found to have the highest fluid carrying capacity of 0.082 ml/sec at 138 kPa with a Reynolds number of 738. A microneedle with a built in microfilter had a flow rate of 0.07 ml/sec. Although the throughput of these microneedles is low they compare favorably with other microneedle designs. Laminar flow models were found to accurately predict the flow behavior through the microneedles. All computational modeling was performed with the CFDRC CFD-ACE + suite of software tools.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1025716427229</doi></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2003-09, Vol.5 (3), p.245
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_journals_212142366
source Springer Nature - Complete Springer Journals
title Modeling of Microfabricated Microneedles for Minimally Invasive Drug Delivery, Sampling and Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Microfabricated%20Microneedles%20for%20Minimally%20Invasive%20Drug%20Delivery,%20Sampling%20and%20Analysis&rft.jtitle=Biomedical%20microdevices&rft.au=Trebotich,%20D&rft.date=2003-09-01&rft.volume=5&rft.issue=3&rft.spage=245&rft.pages=245-&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1023/A:1025716427229&rft_dat=%3Cproquest%3E417582811%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212142366&rft_id=info:pmid/&rfr_iscdi=true