Ellipsoidal mixed-integer representability
Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by a...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2018-11, Vol.172 (1-2), p.351-369 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 1-2 |
container_start_page | 351 |
container_title | Mathematical programming |
container_volume | 172 |
creator | Del Pia, Alberto Poskin, Jeffrey |
description | Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using additional variables, by these systems are called ellipsoidal mixed-integer representable. In this work, we give geometric conditions that characterize ellipsoidal mixed-integer representable sets. |
doi_str_mv | 10.1007/s10107-017-1196-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121343413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121343413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dee79e6ba7482b48eebcd644e3695fa75e750fdce70b1f86d012f08255187f943</originalsourceid><addsrcrecordid>eNp1kMtKA0EQRRtRMEY_wF3AndBa1e9ZSogPCLjRdTOPaukwmRm7J2D-3pERXLmqzbn3Uoexa4Q7BLD3GQHBckDLEQvDzQlboJKGK6PMKVsACM21QThnFznvAAClcwt2u2nbOOQ-NmW72scvanjsRvqgtEo0JMrUjWUV2zgeL9lZKNtMV793yd4fN2_rZ759fXpZP2x5LdGMvCGyBZmqtMqJSjmiqm6MUiRNoUNpNVkNoanJQoXBmQZQBHBCa3Q2FEou2c3cO6T-80B59Lv-kLpp0gsUKJVUKCcKZ6pOfc6Jgh9S3Jfp6BH8jxI_K_GTEv-jxJspI-ZMnthu-vGv-f_QN-8_YwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121343413</pqid></control><display><type>article</type><title>Ellipsoidal mixed-integer representability</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals (MCLS)</source><creator>Del Pia, Alberto ; Poskin, Jeffrey</creator><creatorcontrib>Del Pia, Alberto ; Poskin, Jeffrey</creatorcontrib><description>Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using additional variables, by these systems are called ellipsoidal mixed-integer representable. In this work, we give geometric conditions that characterize ellipsoidal mixed-integer representable sets.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-017-1196-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Integer programming ; Linear programming ; Linear systems ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Theoretical</subject><ispartof>Mathematical programming, 2018-11, Vol.172 (1-2), p.351-369</ispartof><rights>Springer-Verlag GmbH Germany and Mathematical Optimization Society 2017</rights><rights>Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dee79e6ba7482b48eebcd644e3695fa75e750fdce70b1f86d012f08255187f943</citedby><cites>FETCH-LOGICAL-c316t-dee79e6ba7482b48eebcd644e3695fa75e750fdce70b1f86d012f08255187f943</cites><orcidid>0000-0002-8747-182X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-017-1196-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-017-1196-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Del Pia, Alberto</creatorcontrib><creatorcontrib>Poskin, Jeffrey</creatorcontrib><title>Ellipsoidal mixed-integer representability</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using additional variables, by these systems are called ellipsoidal mixed-integer representable. In this work, we give geometric conditions that characterize ellipsoidal mixed-integer representable sets.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Linear systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKA0EQRRtRMEY_wF3AndBa1e9ZSogPCLjRdTOPaukwmRm7J2D-3pERXLmqzbn3Uoexa4Q7BLD3GQHBckDLEQvDzQlboJKGK6PMKVsACM21QThnFznvAAClcwt2u2nbOOQ-NmW72scvanjsRvqgtEo0JMrUjWUV2zgeL9lZKNtMV793yd4fN2_rZ759fXpZP2x5LdGMvCGyBZmqtMqJSjmiqm6MUiRNoUNpNVkNoanJQoXBmQZQBHBCa3Q2FEou2c3cO6T-80B59Lv-kLpp0gsUKJVUKCcKZ6pOfc6Jgh9S3Jfp6BH8jxI_K_GTEv-jxJspI-ZMnthu-vGv-f_QN-8_YwI</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Del Pia, Alberto</creator><creator>Poskin, Jeffrey</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8747-182X</orcidid></search><sort><creationdate>20181101</creationdate><title>Ellipsoidal mixed-integer representability</title><author>Del Pia, Alberto ; Poskin, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dee79e6ba7482b48eebcd644e3695fa75e750fdce70b1f86d012f08255187f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Linear systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Pia, Alberto</creatorcontrib><creatorcontrib>Poskin, Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Pia, Alberto</au><au>Poskin, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ellipsoidal mixed-integer representability</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>172</volume><issue>1-2</issue><spage>351</spage><epage>369</epage><pages>351-369</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using additional variables, by these systems are called ellipsoidal mixed-integer representable. In this work, we give geometric conditions that characterize ellipsoidal mixed-integer representable sets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-017-1196-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8747-182X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2018-11, Vol.172 (1-2), p.351-369 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_2121343413 |
source | EBSCOhost Business Source Complete; SpringerLink Journals (MCLS) |
subjects | Calculus of Variations and Optimal Control Optimization Combinatorics Full Length Paper Integer programming Linear programming Linear systems Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
title | Ellipsoidal mixed-integer representability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ellipsoidal%20mixed-integer%20representability&rft.jtitle=Mathematical%20programming&rft.au=Del%20Pia,%20Alberto&rft.date=2018-11-01&rft.volume=172&rft.issue=1-2&rft.spage=351&rft.epage=369&rft.pages=351-369&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-017-1196-6&rft_dat=%3Cproquest_cross%3E2121343413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121343413&rft_id=info:pmid/&rfr_iscdi=true |